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Abstract

The analysis of molecular data from natural populations has allowed researchers to

answer diverse ecological questions that were previously intractable. In particular,

ecologists are often interested in the demographic history of populations, information

that is rarely available from historical records. Methods have been developed to infer

demographic parameters from genomic data, but it is not well understood how

inferred parameters compare to true population history or depend on aspects of experi-

mental design. Here, we present and evaluate a method of SNP discovery using RNA

sequencing and demographic inference using the program dadi, which uses a diffusion

approximation to the allele frequency spectrum to fit demographic models. We test

these methods in a population of the checkerspot butterfly Euphydryas gillettii. This
population was intentionally introduced to Gothic, Colorado in 1977 and has as experi-

enced extreme fluctuations including bottlenecks of fewer than 25 adults, as docu-

mented by nearly annual field surveys. Using RNA sequencing of eight individuals

from Colorado and eight individuals from a native population in Wyoming, we gener-

ate the first genomic resources for this system. While demographic inference is com-

monly used to examine ancient demography, our study demonstrates that our

inexpensive, all-in-one approach to marker discovery and genotyping provides suffi-

cient data to accurately infer the timing of a recent bottleneck. This demographic sce-

nario is relevant for many species of conservation concern, few of which have

sequenced genomes. Our results are remarkably insensitive to sample size or number

of genomic markers, which has important implications for applying this method to

other nonmodel systems.
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Introduction

Demographic history shapes patterns of genetic varia-

tion within and between populations (Wright 1931).

Recent methods take advantage of these patterns to

infer past demographic events from genomic data sam-

pled from natural populations (Beaumont 1999; Adams

& Hudson 2004; Cornuet et al. 2008; Gutenkunst et al.

2009; Lohmueller et al. 2009; Lopes et al. 2009; Pool et al.

2010; Li & Durbin 2011; Luki�c & Hey 2012). Inferences

from genomic data supplement paleontological records

to reveal ancient events in populations’ history, includ-

ing expansions, crashes, and migration events. While

these approaches have proven invaluable, most meth-

ods of demographic inference have been empirically
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validated in systems where demographic history is

known only by indirect means (e.g. alternative genetic

methods or fossil evidence) and by comparing infer-

ences to known parameters from simulated data sets.

Meanwhile, all evolutionary simulations rely on particu-

lar simplifying assumptions (e.g. neutrality or absence

of linked selection) that are often violated in nature and

can potentially lead to inaccurate estimates of demo-

graphic parameters (Messer & Petrov 2013). It is there-

fore important to test methods on positive controls

from natural systems with known demographic history

to examine under what circumstances inferences are

sensitive or robust to these violations. Similarly unex-

plored are issues of experimental design for generating

the genomic data upon which these methods rely. A

reference genome and other genomic resources are not

available for many nonmodel species in which knowl-

edge of demographic history may be desired. An

approach that can inexpensively and universally survey

genetic variation at the scale necessary for demographic

inference can help reveal important aspects of popula-

tion history in diverse study systems.

An introduced population of Gillette’s checkerspot

butterfly, Euphydryas gillettii (Nymphalidae), which has

experienced recent and severe bottlenecks, offers an

ideal system to examine whether demographic infer-

ence can be accurately applied to events occurring on

an ecological timescale. This univoltine butterfly species

inhabits meadows on eastern facing slopes of the north-

ern Rocky Mountains. Adults fly during a 4-week per-

iod from June through mid-August with females laying

clusters of more than 100 eggs on leaves of the larval

hostplant, Lonicera involucrata (Williams et al. 1984).

Eggs hatch in July through September, with predia-

pause larvae forming communal feeding webs. The lar-

vae then overwinter in diapause within these webs

until they emerge in May and June, experiencing high

mortality during diapause. Post-diapause larvae move

out of the web for feeding and pupate away from their

host plants near the ground.

The E. gillettii native range spans from western Wyo-

ming through Idaho and Montana into Alberta and Brit-

ish Columbia. In 1977 (33 years prior to sampling for

this study), the species was intentionally introduced to

a field site at the Rocky Mountain Biological Laboratory

in Gothic, Colorado (CO) (Holdren & Ehrlich 1981) (Fig.

1A). Founder individuals were obtained from a popula-

tion at Granite Creek, Wyoming (WY), which has since

been extirpated (R. C. McCoy & C. L. Boggs, personal

observation). The CO and WY habitats were intention-

ally matched as closely as possible, including an

increase in elevation in CO accounting for the difference

in latitude between the two sites. As a poor disperser

with narrow habitat requirements, the introduced popu-

lation of E. gillettii has been completely isolated from

the native range by the arid Great Divide Basin, elimi-

nating gene flow as a potentially confounding factor in

our demographic analyses (Williams 1988; Boggs et al.

2006). Demographic data were recorded throughout

these 34 generations with the exceptions of 1990–1997

and 1999–2001, during which the population was unli-

kely to have reached large numbers. The population

established at the introduction site, persisting at 200 or

fewer adult individuals for over a decade, including

two separate observed bottlenecks of fewer than 25

adult butterflies (Fig. 1B). Over the past decade, the

population experienced drastic fluctuations, with mark-

release-recapture estimates ranging from 100 to nearly

10 000 adult individuals (Boggs et al. 2006; C. L. Boggs,

unpublished).

Using this unique ecological system, our study dem-

onstrates that multiplex cDNA sequencing (RNA-seq)

can inexpensively generate sufficient polymorphism

data to perform demographic inference in an ecological

model species with no pre-existing genomic resources.

We used the program dadi (Gutenkunst et al. 2009) to
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(A) (B) Fig. 1 Documented history of the

Euphydryas gillettii introduction. (A) In

1977, E. gillettii were intentionally intro-

duced to Rocky Mountain Biological Lab-

oratory, Gothic, CO, from propagules

obtained from Granite Creek, Wyoming

(WY). Contemporary samples were

obtained from Gothic as well as a site at

Togwotee Pass, WY, a proxy for the

now-extirpated Granite Creek source

population. (B) Mark–release–recapture
(MRR) estimates of adult population size

in the Colorado population. The y-axis is

depicted on a log scale to show fluctua-

tions at very small population sizes.
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infer parameters of demographic models that best fit

the genomic data. The programme uses a numerical

solution of a multipopulation diffusion equation to cal-

culate the expected allele frequency spectrum for a

specified demographic model, then performs optimiza-

tion to find the values of the parameters which maxi-

mize the likelihood of the data given the model. This

numerical approach is fast and overcomes the need for

computationally demanding coalescent simulations as

implemented by other approaches such as approximate

Bayesian computation (ABC) (e.g. Beaumont et al. 2002)

and Markov chain Monte Carlo (MCMC) methods (e.g.

Drummond et al. 2012). We chose to use the dadi soft-
ware for our analyses because (i) frequency spectra can

be generated from any class of polymorphic marker

and the method can thereby be generalized to any

large-scale genomic data set; (ii) as models are fit to the

frequency spectra alone, results can be more easily

interpreted as compared to more complex methods

relying on many summary statistics; and (iii) the dadi’s
application programming interface facilitates perfor-

mance analyses to help understand how inference

depends on various aspects of experimental design.

Future work may compare results from different

approaches to demographic inference using the same

data, but such an analysis is beyond the scope of this

study, which is focused on the demonstration that the

frequency spectrum generated from a single data set

contains sufficient information to reveal recent demo-

graphic history in a nonmodel species. The program

dadi has been widely applied, including investigation of

the demographic history of humans (Gutenkunst et al.

2009), rice (Molina et al. 2011), orangutans (Locke et al.

2011) and other species.

Our study leverages detailed knowledge of ecology

and population history of the unique E. gillettii system

to evaluate parameter estimates and provide an

important positive control in the case of recent bottle-

necks, a demographic scenario that applies to many

nonmodel species of conservation concern. We outline

a widely applicable method for marker discovery and

genotyping as well as discuss experimental consider-

ations for studying recent bottlenecks in other

nonmodel systems.

Materials and methods

Population sampling and library preparation

Eight third instar larvae were sampled from each of

two field sites in September 2010: Togwotee Pass, Teton

County, WY and Rocky Mountain Biological Labora-

tory, Gunnison County, CO. The Togwotee Pass popu-

lation serves as a proxy for the now-extirpated

population from Granite Creek, Teton County, WY,

which is located approximately 40 km southwest of the

Togwotee Pass site. The Granite Creek population, from

which the CO population is derived, presumably main-

tained some connectivity with the Togwotee Pass

population and with the rest of the E. gillettii

metapopulation scattered throughout the Gros Ventre

Wilderness. Larvae were collected and shipped alive in

refrigerated containers, allowing them to clear their guts

before freezing at �80 ∘C.

Population genomic studies encounter a common

trade-off between the number of genomic markers cov-

ered at sufficient depth and the number of individuals

genotyped. Faced with this trade-off, we decided to use

RNA-sequencing (RNA-seq) of pooled, barcoded sam-

ples as a method to capture a reduced representation of

the genome. This method allowed us to build a refer-

ence transcriptome and to discover variants from a sin-

gle data set. In contrast to restriction-site-associated

DNA sequencing (RAD-seq) or other methods of

reduced representation, RNA-seq is biased towards dis-

covery of variation in coding regions (Davey et al.

2011). By contrasting results of demographic inference

using synonymous vs. nonsynonymous SNPs, we also

sought to understand the impact of selection on demo-

graphic inference, which may be a confounding factor

for certain experimental designs.

Total RNA was extracted from each of 16 whole lar-

vae using a standard Trizol RNA isolation protocol.

Samples were treated with the TURBO DNA-free kit

(Ambion) according to manufacturer’s protocol to

remove DNA contamination. Samples with the highest

quality (i.e. the least evidence of small RNA fragments

on Bioanalyzer (Agilent) traces) were used for down-

stream library preparation. RNA integrity number

(RIN) is not a reliable metric for this species as E. gil-

lettii ribosomal RNA apparently harbours a hidden

break that causes the 28S rRNA to fragment and comi-

grate with the 18S rRNA (Winnebeck et al. 2010).

To prepare cDNA libraries for the selected 16 sam-

ples, we used the TruSeq RNA Sample Preparation Kit

(Illumina). This protocol includes poly-A mRNA selec-

tion, enzymatic fragmentation, first- and second-strand

cDNA synthesis, end-repair, 3’ adenylation, adapter

ligation and PCR amplification. Sample preparation

proceeded according to the manufacturer’s protocol,

except for the adapter ligation step during which we

incorporated custom adapters (synthesized by IDT)

with 8 bp barcodes unique to each of the 16 libraries.

Libraries were pooled and sequenced on a single lane

of the Illumina HiSeq 2000 platform at the Stanford

Center for Genomics and Personalized Medicine. Over

100 million 2 9 100 bp paired-end reads passed quality

filtering and were utilized in downstream analyses.

© 2013 John Wiley & Sons Ltd

138 R. C . MCCOY ET AL.



Transcriptome assembly and annotation

We sought to assemble the E. gillettii transcriptome de

novo as a reference to which to map individual sample

data to discover population variation. We first demulti-

plexed individual sample data in silico according to the

unique 8 bp barcodes, then trimmed these barcode

sequences along with adenine overhangs (9 bp total)

from the beginning of reads. We used the FastQC quality

control tool <http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/> to evaluate the processed reads’

qualities. Based on these metrics, we performed dynamic

read trimming, removing ambiguous base calls at the

end of FASTQ reads with the FASTX-Toolkit <http://
hannonlab.cshl.edu/fastx_toolkit/index.html>. We dis-

carded reads containing adapter and primer contamina-

tion using TagDust (Lassmann et al. 2009), and any

remaining orphan reads were discarded.

In preparation for de novo transcriptome assembly, we

pooled reads from all 16 libraries, then input these data

to the de Bruijn graph-based assembler Trinity (Grabh-

err et al. 2011). The Inchworm module of Trinity gener-

ates a kmer catalogue and performs greedy extension

based on kmer overlap. Using a range of kmer lengths

during assembly can potentially improve sensitivity

and allow reconstruction of transcripts with a wider

range of expression levels (Schulz et al. 2012). We there-

fore modified the Trinity (version r2012-10-05) source

code (C. W. Wheat, personal communication) to perform

six separate assemblies with six kmer lengths (odd

values from k = 21 to k = 31). We limited assembly to

odd kmer lengths because even kmers may be palin-

dromic reverse complements of themselves and intro-

duce ambiguity to the de Bruijn graph. Assemblies

were conducted on the Stanford SCG3 computing clus-

ter with 120G of RAM. We calculated standard assem-

bly metrics (contig number, assembly length, N50) for

each of these assemblies and used blastx (Altschul et al.

1997) to search for homology between our contigs and a

custom database of lepidopteran peptides downloaded

from InsectaCentral (Papanicolaou et al. 2008). We

assessed the degree of overlap among assemblies by

comparing composition of blastx hits to the InsectaCen-

tral lepidopteran protein database with e-value <1e-05
and alignments covering >80% of the targets’ length.

Based on the apparent similarity in length and content

for assemblies using different kmer lengths, we selected

the k = 31 assembly for downstream analysis to reduce

the possibility that repetitive regions would produce

spurious SNPs. In our case, the challenge of removing

redundancy outweighed the possible gain in sensitivity

of combining multiple kmer assemblies.

As quality control, we evaluated the k = 31 assembly

based on homology to protein databases of three

lepidopteran species. We first selected the longest contig

sequences from each Trinity subcomponent, as multiple

contigs deriving from a single subcomponent can share

exons and may therefore be partially redundant. We

used reciprocal blast searches to compare the E. gillettii

transcriptome assembly with protein databases from the

silkmoth (Bombyx mori), monarch (Danaus plexippus) and

postman butterfly (Heliconius melpomene). We used blastx

to search E. gillettii transcripts against these databases

and tblastn (Altschul et al. 1997) to reciprocally search

the protein databases against the E. gillettii transcriptom-

e. Here, we report the number of unique hits with e-

value <1e-03, as well as the fraction of each reference

database hit by the query database (Table S2). We then

limited these assessments to the small subset of contigs

that harboured SNPs that we discovered downstream in

our pipeline and used for demographic inference. For

these contigs, we report the number of unique hits with

e-value <1e-03 and the number of these hits that cover

>80% of reference proteins or 50% of reference contigs

(Table S3). Shorter alignment length is expected for focal

species to E. gillettii because UTRs will not be aligned

when blasting protein sequences to mRNA transcripts.

We also used blastx (Altschul et al. 1997) to search SNP-

containing contigs against the NCBI nr database, assess-

ing the top species hits (e-value <1e-03) for all contigs as
a quality control.

SNP discovery

In order to identify SNPs for the generation of site fre-

quency spectra, each sample’s preprocessed reads were

mapped to the newly generated Trinity reference using

BWA (version 0.6.2) (Li & Durbin 2009). We used

SAMtools (version 0.1.18) to extract only uniquely

aligned reads (Li et al. 2009). SNPs were discovered in

the filtered multisample alignments using the GATK

(version 2.3) UnifiedGenotyper algorithm with default

parameters. We found that many called variants exhib-

ited an extreme excess of heterozygote genotypes as

well as deviation from the expected 50:50 allele bal-

ance (i.e. proportion of reads supporting the reference

vs. alternative allele). In some cases, several linked

variants exhibited these patterns. We suspected that

these observations were due to an abundance of clo-

sely related paralogs or other repetitive sequences. In

the case that one member of a paralog family is

expressed at a low level, it may not be represented in

the reference sequence and reads derived from this

gene will map to its highly expressed, assembled par-

alog. Recent work supports the conclusion that a large

proportion of called SNPs from RNA-seq data are

indeed false positives due to hidden paralogy (Gayral

et al. 2013).
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To therefore reduce potential false positives, we mod-

ified our pipeline to allow only one mismatch per

aligned read. We then used a hard filter to extract

potential false SNPs with at least one sample sequenced

to ≥109 coverage with reads supporting both alleles

and >75% of reads supporting the reference allele. We

likewise extracted putative true SNPs for which all sam-

ples were sequenced to ≥109 coverage, and any indi-

vidual with nonzero counts of each allele had an allele

balance between 30 and 70%. The resulting sets of 965

putative false SNPs and 6834 putative true SNPs were

used to train the GATK Variant Quality Score Recalibra-

tion (VQSR) tool (Depristo et al. 2011) and classify all

42620 raw SNP calls as true or false at various sensitiv-

ity thresholds. The VQSR procedure, as implemented

here, uses a Gaussian mixture model to distinguish true

and false variants based on allele balance, the inbreed-

ing coefficient (a measure of deviation from Hardy–

Weinberg equilibrium) and mapping quality. We then

extracted a final variant set consisting of SNPs that

passed VQSR at a truth sensitivity threshold of 0.90 and

had at least 69 coverage per sample in at least 12 of the

16 samples.

We annotated SNPs as synonymous, nonsynonymous

or untranslated by identifying open reading frames

(ORFs) with the program OrfPredictor (version 2.3)

(Min et al. 2005). OrfPredictor uses homology informa-

tion from blastx (to the InsectaCentral lepidopteran

peptide database, in our case) as well as de novo predic-

tion based on intrinsic signals in the absence of blastx

results. Using ORF predictions, we translated sequences

after substituting the alternative SNP, classifying vari-

ants as nonsynonymous if the substitution altered the

amino acid sequence.

In order to limit the potentially confounding effects

of selection on demographic inference, we first confined

analyses to high-confidence synonymous SNPs discov-

ered by our pipeline. These SNPs were used to generate

a joint site frequency spectrum for input to dadi (version
1.6.3). To incorporate information from all markers and

deal with instances of missing data, we projected the

frequency spectrum down to six samples (12 alleles)

per population. The projection method of dadi uses a

hypergeometric distribution to effectively average over

all possible results of sampling 6 alleles per population

from the total number of genotype calls at each SNP

(Gutenkunst et al. 2009).

For visualization of the genetic data used for demo-

graphic reconstruction, we generated a heatmap of the

folded (i.e. unpolarized) joint frequency spectrum of all

SNPs using the package ggplot2 within the R statistical

environment (Fig. 3A) (Wickham 2009; R Core Team

2013). We also performed Q-mode principal component

analysis on the genotype matrix using the ade4 package

(Fig. 3B) (Dray & Dufour 2007). Genotypes were

encoded as 0, 1 and 2, representing homozygous for the

major allele, heterozygous and homozygous for the

minor allele, respectively.

Demographic inference

For each of these three models, best-fit parameter esti-

mates were inferred using synonymous SNPs conform-

ing to our aforementioned filtering criteria (Table 1).

We then simulated Poisson sampling from the fre-

quency spectrum with the built-in sampling method in

dadi to generate 1000 bootstrap samples per model.

Confidence intervals were constructed using empirical

quantiles of the bootstrap distribution. All model

parameters were positive by definition, so in cases

where greater than 2.5% of bootstrap results fell at the

lower boundary of the parameter space, the lower end

of the confidence interval is reported as zero. We speci-

fied three simple demographic models in dadi, the first

and last of which reflect known demographic history.

Model A. Model A, a two population model (Fig. 2A),

was fit using data from both the WY and CO popula-

tions. In this model, we inferred the parameters sSPLIT,
gWY and gCO, which specify the timing of the CO popu-

lation establishment (or alternatively, the bottleneck

duration), the effective size of the WY population and

the effective size of the CO population, respectively.

Population sizes were inferred in units relative to an

ancestral effective population size arbitrarily set at one,

while time was inferred in coalescent units of s, where

s�2NANC = T generations. To therefore compare sSPLIT to

the timing of the introduction known from the demo-

graphic record, we estimated the effective population

size of the CO population (NCO). We derived annual

population estimates from mark–release–recapture esti-

mates of census N or counts of egg clusters, as detailed

in Boggs et al. (2006) (Table S4, Supporting informa-

tion). For years during which mark–release–recapture

was not performed, we used a regression model

incorporating significant weather variables to estimate

adult population size (Table S5, Supporting informa-

tion). We accounted for deviations from 1:1 sex ratios

with the equation Ne = 4NmNf/(Nm + Nf), where Nm

and Nf are the annual census estimates of adult males

and females, respectively (Hedrick 2011). For years dur-

ing which mark–release–recapture data were insuffi-

cient to generate separate counts of males and females,

we applied the average reduction in Ne due to deviation

from 1:1 sex ratio of 0.94N. The multigeneration esti-

mate of Ne is then the harmonic mean of these sex-

ratio-corrected single-generation estimates (Ni) across t

generations: 1=Ne ¼ 1
t

Pt
i¼ 1ð1=NiÞ (Hedrick 2011). We

© 2013 John Wiley & Sons Ltd
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then incorporated a literature-derived estimate of vari-

ance in reproductive success based on cage experiments

in Bicyclus anynana (Nymphalidae), further reducing Ne

to 0.60N (Brakefield et al. 2001). This reduction is con-

sistent with data from several species within Nymphali-

dae that suggest that nearly half of males do not mate

(Boggs 1979; Oberhauser 1989, C. L. Boggs, in prepara-

tion). Upon incorporating each of these factors, we gen-

erated a rough estimate of NCO = 34. This estimate was

used to calculate an estimate of NANC = NCO/gCO and

scale all inferred demographic parameters to units of

individuals (for population size parameters) and gener-

ations (for time parameters).

We wish to emphasize that there are many sources of

uncertainty that affect our estimate of NCO, including

several factors for which we did not account in interest

of simplicity. Variance due to sampling of the frequency

spectrum and error in the regression models are easily

quantified and are reported here (Table 1, Tables S4

and S5). Countless other potential sources of error,

including factors such as the effect of early male emer-

gence (protandry), fine scale population structure and

assortative mating are not quantified here. The final

scaling factor should therefore be regarded as a rough

estimate to demonstrate that the frequency spectrum

generated from expressed SNPs contains sufficient

information to perform such inference. Nevertheless,

the estimate of NCO is independent of the genetic data

and based on intensive field survey over several

decades, a rare advantage of this ecological system.

Model B. In models B1 and B2, we extended model A

to infer recent migration between the WY and CO pop-

ulations (Fig. 2B). Although we know that no such

migration actually occurred, we were interested in

inferring migration because in many systems, research-

ers will not have pre-existing knowledge that precludes

gene flow. In these cases, inferences of gene flow may

confound inference of other demographic parameters.

In model B1, we inferred the rate of unidirectional

migration from WY to CO (Fig. 2B1). If barriers to

migration were absent, this scenario would be plausible

as the native range populations could act as a source to

the smaller CO sink population. In model B2, we

inferred separate migration rates in each direction (Fig.

2B). In each case, inferred migration rates are reported

in units of Mi?j, where Mi?j = 2NANCmi?j and mi?j are

defined as the proportion of individuals in population j

that are new migrants from population i every genera-

tion. We then performed model selection by calculating

the Akaike information criterion (AIC) for each of the

migration models as well as the model with no migra-

tion, preferring the model with the minimum AIC value

(Akaike 1974).

Model C. Model C (Fig. 2C) was fit using data from

only the CO population. Inferring demographic history

from only one population allowed us to understand

how the addition of data from the second (proxy ances-

tral) population affected precision in demographic infer-

ence. In this model, an ancestral population experiences

Table 1 Best-fit parameter estimates for alternative demographic models fit to various portions of the data. Models correspond to

Fig. 2. Fixed parameters are indicated in bold, and 95% confidence intervals are indicated in brackets. Effective population sizes are

reported with respect to an ancestral population arbitrarily set at gANC = 1, times are reported in units of s, where s 9 2NANC = T

generations, and migration rates in units of Mi?j, where Mi?j/2NANC = mi?j, the proportion of individuals in population j who are

new migrants from population i every generation. Likelihoods and AIC are directly comparable for models A, B1 and B2, which rep-

resent nested models fitted with the same data

Data Model gWY gCO MWY?CO MCO?WY sSPLIT

Log

likelihood AIC

WY & CO

synonymous

A 0.922

[0.673–1.253]

0.104

[0.076–0.137]

NA NA 0.066

[0.047–0.087]

�211.86 429.72

WY & CO

synonymous

B1 0.884

[0.671–1.166]

0.119

[0.082–0.171]

0.080

[0.051–0.121]

NA 0.887

[0–2.056]

�211.01 430.02

WY & CO

synonymous

B2 0.893

[0.649–1.190]

0.121

[0.083–0.167]

0.081

[0.051–0.122]

0.906

[0–1.911]

0.002 * �211.00 432.00

CO synonymous C NA 0.104 NA NA 0.048

[0.029–0.143]
�21.65 NA

WY & CO

synonymous,

nonsynonymous,

& UTR

A 1.320

[0.936–1.838]
0.173

[0.121–0.230]
NA NA 0.117

[0.083–0.156]
�284.17 NA

WY, Wyoming; CO, Colorado; AIC, Akaike information criterion.

*In model B2, bootstrap estimates of sSPLIT were highly erratic and non-normally distributed, so the confidence interval is not

reported.

© 2013 John Wiley & Sons Ltd

DEMOGRAPHIC INFERENCE IN EUPHYDRYAS GILLETTI I 141



a bottleneck starting at time sSPLIT in the past and

extending to the time of sampling. This bottleneck is

modelled by a change in the effective population size

from gANC to gCO at time sSPLIT. Because sSPLIT and gCO
are confounding variables, we fixed gCO to the best-fit

estimate from the two-dimensional model and inferred

sSPLIT.

Nonsynonymous SNPs

To test the effect of selection on parameter estimates, we

repeated the demographic inference procedure for

model A (Fig. 2A), this time fitting our model to the full

data set of 6349 high-confidence synonymous, nonsyn-

onymous and untranslated SNPs with genotype calls in

at least six samples per population. We contrasted

parameters estimated from this larger data set to those

inferred from the smaller set of synonymous markers

alone. To verify that any differences were not an artefact

of the larger number of markers, we randomly subsam-

pled the frequency spectrum to the same size as the syn-

onymous data set (1881 SNPs), repeating this procedure

1000 times and estimating 95% confidence intervals.

Performance analyses

We were interested in the sensitivity of parameter esti-

mates to the number of SNPs included in our analysis.

We used the program ms (Hudson 2002) to sample

varying numbers of SNP markers from eight individu-

als per population, simulating the frequency spectrum

under the best-fit parameters of model A (Fig. 2A).

Given that the relative genomic locations of SNP mark-

ers were unknown, we elected to simulate a single

locus with a high recombination rate (q = 2000 = 4Nrefr,

where r is the per-generation probability of recombina-

tion between the ends of the locus and Nref is the effec-

tive size of the ancestral population). We then scaled

the resulting frequency spectrum to a given number of

segregating sites using the frequency spectrum manipu-

lation functions in dadi. We also tested a range of

recombination rates, finding that they did not qualita-

tively alter our results. Our approach represents a bal-

ance between speed of simulation and a desire to

account for additional variance in the frequency spec-

trum due to physical linkage among markers. An alter-

native to this approach would be to independently

simulate unlinked loci, but our approach is conservative

in that it accounts for correlations in coalescent history

arising from physical linkage of among markers. We

repeated the simulations 1000 times for each number of

sampled markers and used dadi to infer the best-fit

parameter estimates for each simulated data set. This

procedure allowed us to examine how the variance in

estimates as well as the proportion of nonconverging

estimates changed as a function of sample size of SNP

markers (Fig. 4A).

We were similarly interested in the sensitivity of

parameter estimates to the number of sampled individ-

uals per population. We again simulated model A (Fig.

2A) using ms, but incremented the number of sampled

individuals from one to 10 per population, with the

number of SNPs fixed at 1881. We repeated the simula-

tions 1000 times under the best-fit parameters of model

A (Fig. 2A) and again used dadi to infer the best-fit

parameters estimates for each simulated data set. We

then examined how variance in parameter estimates

and the proportion of nonconverging estimates changed

as a function of the number of individuals sampled per

population (Fig. 4B).

Results

Transcriptome assembly, annotation and SNP
discovery

Combining sequence data from all 16 individuals, we

used Trinity to perform de novo assembly of the Eu-

phydryas gillettii larval transcriptome. We performed

separate assemblies using a range of kmer lengths for

the first Trinity module called Inchworm. Each assem-

bly produced greater than 50 000 subcomponents which

contain one or more isoforms of putative transcripts.

When selecting the longest contig per subcomponent,

N50 length ranged from 812 to 1320 for different kmer

choices (Table S1, Supporting information). Greater

kmer lengths are better for distinguishing among short

repetitive sequences, but may lead to a more convo-

luted de Bruijn graph. Based on our goal of variant dis-

covery, we were less concerned with assembly

contiguity than the presence of false-positive SNPs, so

we selected the k = 31 assembly for all downstream

analyses.

We compared the E. gillettii transcriptome to protein

sequence data available from three other lepidopteran

species using reciprocal blast searches. Our transcrip-

tome assembly covered a large proportion (69.6–76.5%)

of the proteomes of these related species (Table S2, Sup-

porting information). We observed a comparable num-

ber of matches when searching these species’ proteomes

against the E. gillettii transcriptome. The lower fraction

of hits to the target database reflects differences in the

sizes of the transcriptome and proteome databases,

divergence among orthologs, genes that are unique to

individual species, as well as possible contamination or

spurious transcripts within each database.

All downstream analyses were biased, however,

towards transcripts that were sufficiently highly
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expressed in enough individuals to make high-confi-

dence genotype calls. As a result, only 2757 of the

56 536 unique contigs harboured high-confidence SNPs

ultimately used for demographic inference. Higher

expression levels facilitate the faithful reconstruction of

mRNA transcripts, and highly expressed genes tend to

be more evolutionarily conserved (Subramanian 2004).

We consequently observed a higher proportion of reci-

procal blast hits between this subset of E. gillettii tran-

scripts and protein databases of related species (Table

S3, Supporting information). Of 2408 SNP-containing

contigs with significant (e-value <1e-03) hits to the

NCBI nr database, 15 had top matches to plants, 99 had

top matches to bacteria and only one had a top match

to humans, which together represent the most likely

sources of contamination in this experiment. Mean-

while, 2009 sequences had top matches to lepidopteran

species. The remainder likely reflects genes that are

either species-specific, highly conserved, or highly

diverged and therefore do not match to lepidopteran
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reference proteins. We therefore opted against filtering

SNPs based on these results, as such filtering could

introduce new biases that could confound downstream

demographic analyses. Together, our results suggested

that spurious transcripts and contamination are rare in

the portion of our assembly utilized for demographic

inference.

We incorporated homology information from blast

searches to all available lepidopteran protein data to

identify likely ORFs using the program OrfPredictor.

This allowed us to classify 2277 synonymous, 1396

nonsynonymous and 2675 UTR SNPs with at least 69

coverage per sample in at least six samples per popula-

tion. As expected under purifying selection, the synony-

mous and nonsynonymous frequency spectra differed

in shape in both the WY (v2[6,N = 1276] = 16.79,

P = 0.010) and CO (v2[6,N = 531] = 12.63,P = 0.049)

populations, with an excess of nonsynonymous SNPs at

low frequency (WY synonymous Tajima’s D = �0.0494,

WY nonsynonymous Tajima’s D = �0.385, CO synony-

mous Tajima’s D = 0.692, CO nonsynonymous Tajima’s

D = 0.505). Of the 2277 synonymous SNPs, 1991 and
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959 were segregating in the WY and CO populations,

respectively. While we identified 71% of CO SNPs seg-

regating in WY, we only identified 34% of WY SNPs

segregating in CO. The asymmetry in the number and

overlap of segregating sites is consistent with the foun-

der event and subsequent bottlenecks causing substan-

tial allelic extinction in the derived population.

Demographic inference

Model A. The demographic model, in which an ancestral

population from WY splits to form the introduced

CO population (Fig. 2A), reflects our knowledge of the

true population history. Upon fitting this model using

data from both the contemporary WY and CO popula-

tions, we recovered converging estimates of all demo-

graphic parameters (Table 1). Our model underestimated

the number of low frequency SNPs that were lost in the

CO population, but provided a good fit to the data

overall as the model and data frequency spectra were

not significantly different (v2[86,N = 1881.4] = 50.09,P =
0.999) (Fig. S1, Supporting information). While the effec-

tive size of the WY population (gWY) was inferred to be

approximately the same as the ancestral population (95%

CI [0.673–1.253]), dadi inferred a severe bottleneck (95%

CI [0.076–0.137]) in the CO population (gCO). These popu-
lation sizes are reported with respect to an ancestral

population arbitrarily set at gANC = 1. In addition, dadi
detected that the bottleneck timing (sSPLIT) was recent

(95% CI [0.047–0.087]), with time reported in units of

2NANC generations.

Upon scaling the inferred parameters to units of indi-

viduals and generations (for population sizes and times,

respectively), we found that inferred parameters were

consistent with the documented history of the popula-

tion. Our census-based estimate of NCO = 34 placed the

scaled estimate of sSPLIT based on best-fit parameters of

model A between 40 and 47 generations in the past

(95% CI), calculated as 2sSPLIT(NCO/gCO). We note, how-

ever, that this confidence interval accounts only for

uncertainty in sSPLIT and gCO. Uncertainty in the crude

estimate of NCO also contributes to uncertainty in the

scaled parameter estimate, which would inflate the con-

fidence interval beyond the reported limits. Neverthe-

less, our estimate of bottleneck onset is close to the

known population establishment 33 generations prior to

sampling, with one generation per year in this system.

This result demonstrates that the joint frequency spec-

trum generated from RNA-seq data contains sufficient

information to infer parameters of demographic scenar-

ios occurring in the recent past.

Model B. Further analyses focused on considering the

robustness of the above results to different treatments

of the data and different specifications of the demo-

graphic model. First, we extended the two- dimensional

demographic model to infer recent migration between

the WY and CO populations (Fig. 2B), although we are

confident that no such migration occurred. In many sys-

tems, however, researchers will not be able to exclude

this possibility, and inferences of migration may be con-

founded with inferences of other demographic parame-

ters. We therefore incorporated migration by modelling

unidirectional gene flow from WY to CO (MWY?CO,

Fig. 2B1) as well as bidirectional gene flow of poten-

tially different magnitudes between WY and CO

(MWY?CO and MCO?WY, Fig. 2B).

For model B1, we found that dadi inferred a low

migration rate (95% CI [0.051–0.121]), but that uncer-

tainty in the estimate of sSPLIT (95% CI [0–2.056]) dra-

matically increased to the point that the confidence

interval included the parameter boundary of zero

(Table 1). This result is not unexpected, given that

migration and drift have contrasting effects on the allele

frequency spectrum (Gutenkunst et al. 2009). To observe

the same amount of drift in the joint frequency spec-

trum in the face of nonzero migration, bottleneck dura-

tion must be greater. However, these effects cannot be

disentangled from the frequency spectrum alone, which

generates uncertainty in the estimates. Estimation of

sSPLIT became erratic upon adding the free parameter

MCO?WY in model B2, likely due to overfitting of our

limited sample.

We evaluated the improvement in likelihood given

the increase in model complexity by calculating the AIC

for each migration model as well as the model with no

migration (Akaike 1974). The model with no migration

had the minimum AIC and was therefore preferred

over the more complex migration models, consistent

with the known demographic history of population iso-

lation (Table 1). As models A, B1 and B2 represent

nested models, we similarly applied the likelihood ratio

test, finding that the model fit was not significantly

improved when allowing for unidirectional (v2[1] = 1.70,

P = 0.192) or bidirectional migration (v2[2] = 1.72,

P = 0.423) as compared to the null model with no migra-

tion. Finally, Gutenkunst et al. 2009 showed that fitting

data including migration with a no-migration model

results in correlated residuals. Our residuals plot for

model A shows no evidence of this phenomenon (Fig.

S1C). In summary, our results demonstrated that while

inference of migration may confound inference of other

demographic parameters, model selection procedures may

help indicate whether suchmigration actually occurred.

Model C. When we fit a simple bottleneck model to

data from only the CO population (Fig. 2C), our

model predictions fit the data relatively well (v2[3,
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N = 803.6] = 3.15,P = 0.370). Nevertheless, bottleneck

magnitude (gCO) and timing (sSPLIT) have confounding

effects on the site frequency spectrum and cannot be

disentangled using data from a single population. We

were interested, however, in the effect of the additional

information from the WY population on inference of

sSPLIT. We therefore fixed gCO to 0.104, its best-fit esti-

mate from the model fit using data from both popula-

tions and repeated demographic inference on the CO

site frequency spectrum. With gCO fixed, dadi infers a

sSPLIT of 0.048. The confidence interval of sSPLIT inferred

from this single-population spectrum (95% CI [0.029–

0.143]) entirely includes that estimated from the joint-

population spectrum in model A (95% CI [0.047–0.087])

demonstrating that we gained precision with multiple-

population inference.

Nonsynonymous SNPs

We initially fit all models using only synonymous SNP

data, which we presumed was important because selec-

tion can alter the frequency spectrum, confounding sig-

natures of neutral demographic history. We examined

whether this is the case for RNA-seq data by comparing

inferences using only synonymous SNPs to the full data

set of 6349 synonymous, nonsynonymous and UTR

SNPs. In this case, best-fit estimates of gWY, gCO and

sSPLIT significantly exceeded those inferred when fitting

the model using synonymous SNP data alone (Table 1).

This difference is not an artefact of the larger number

of SNP markers, as randomly resampling to the same

size as the synonymous data set (1881 SNPs) produced

confidence intervals for gWY (95% CI [0.936–1.838]), gCO
(95% CI [0.121–0.230]) and sSPLIT (95% CI [0.083–0.156])

that included the estimates from the full data set, but

exceeded the estimates from the synonymous data

alone. These results suggest that natural selection

indeed distorted the frequency spectrum and changed

our inferences of demographic parameters. Parameter

overestimation is caused by the skew of the nonsynony-

mous frequency spectrum towards rare variants in both

populations (Fig. S2, Supporting information). The dis-

tortion of the CO frequency spectrum for nonsynony-

mous SNPs is likely a carryover of purifying selection

in the ancestral population, as NCO was too small for

selective differences to generate observable frequency

differences within CO.

Performance analyses

To better understand how parameter estimates were

sensitive to the number of SNP markers and the num-

ber of sampled individuals per population, we simu-

lated frequency spectra under the best-fit parameters of

demographic model A (Fig. 2A), then used dadi to infer

these parameters from the simulated data. We subsam-

pled the simulated frequency spectra for different num-

bers of SNP markers and different numbers of

individuals. While median parameter estimates were

robust even for very small marker sets (as few as 50

SNPs), variance in inferred parameters increased sub-

stantially below approximately 400 SNPs (Fig. 4A).

Increasing marker sets above 400 SNPs only marginally

decreased the variance in estimates and the proportion

of nonconverging estimates. We likewise found that

dadi performed remarkably well even with sample sizes

as low as three individuals per population (Fig. 4B).

Given our particular demographic scenario, sampling

more than four individuals per population did not

appreciably reduce variance in estimates or the propor-

tion of nonconverging estimates.

Discussion

Our study generated the first genomic resources for Gil-

lette’s checkerspot butterfly, Euphydryas gillettii, using a

single data set to assemble the reference transcriptome

and discover genetic variation in two populations. We

leveraged these population genomic data to perform

demographic inference in this rare isolated system with

a well-known history of recent bottlenecks. This demo-

graphic scenario is relevant to many ecological systems,

including species introductions from a small number of

propagules and populations of conservation concern

that have experienced recent declines. We used the

program dadi to accurately infer the timing of the popu-

lation’s introduction (and accompanying reduction in

population size), providing a unique positive control

given this particular demographic history. Our study

complements a large body of previous work using

checkerspot butterflies as model systems in conserva-

tion and metapopulation biology (Ehrlich & Hanski

2004). Within this context, this work demonstrates how

genomic studies of ecological model systems can pro-

vide valuable tests of population genetic theory and

methods.

SNP discovery in RNA sequence data without

pre-existing genomic resources is challenging. Well-

developed methods such as the GATK framework

(Depristo et al. 2011) are designed for detecting variants

in genomic DNA-derived sequence data. However,

high-coverage whole-genome resequencing is currently

prohibitively expensive in most eukaryotic systems, and

sequence capture methods depend on a priori knowl-

edge of the genome sequence to be targeted. Restric-

tion-site-associated DNA sequencing (RAD-seq) offers

one reduced representation alternative by sequencing

restriction-site flanking regions in multiple individuals.
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For the purpose of demographic inference, RAD-seq

may in fact be preferable to RNA-seq in that highly

expressed genes do not account for a large proportion

of overall sequence data [although normalization meth-

ods have been devised to address this problem (Chris-

todoulou et al. 2011)], purifying selection is less likely to

affect these randomly dispersed genomic regions, and

gene paralogy is less likely to confound marker discov-

ery. For systems with no pre-existing genomic

resources, however, researchers may desire a method

that can discover neutral genomic markers for demo-

graphic inference as well as surveying functional

regions. RNA-seq may be preferable in such cases

because it requires no a priori knowledge of the genome

sequence and preferentially targets transcribed regions

of the genome that are more likely to be functional. As

we demonstrated, this allows researchers to address not

only questions about neutral effects of demographic his-

tory, but also the interplay of selection and demography

in nonmodel systems. With the appropriate experimen-

tal design, the same data may also be leveraged for

gene expression analysis or comparative transcriptomics

between populations or between species.

Careful curation of the reference assembly, tuning of

mapping parameters and stringent filtering are however

necessary to extract a high-quality SNP set from

RNA sequence data. Hidden paralogy generates many

spurious SNP calls which can have negative effects on

downstream analyses (Gayral et al. 2013). Here, we

used heuristic SNP filtering to conservatively identify

putative false positives and true positives, using these

sets to train a Gaussian mixture model and classify

variants. Filtering should be performed with care, as

certain filtering strategies (e.g. allele frequency thresh-

olds) could distort the resulting frequency spectrum

and confound demographic inference.

We specified three basic demographic models, the

first of which reflected the known demographic history

and included both the WY and CO populations (Fig.

2A). We fit this model using the synonymous joint fre-

quency spectrum, then scaled the inferred bottleneck

duration (sSPLIT) based on our estimate of the effective

size of the CO population. This estimate was derived

from mark–release–recapture estimates of adult popula-

tion size and sex ratios in E. gillettii (Boggs et al. 2006,

C. L. Boggs, unpublished) as well as a correction for

high variance in reproductive success as reported in

other lepidopteran species (Boggs 1979; Oberhauser

1989; Brakefield et al. 2001). The resulting estimate of

bottleneck duration of between 40 and 47 generations

(95% CI) compares favourably to the documented intro-

duction 33 generations ago. We note that the scaled val-

ues of demographic parameters carry uncertainty from

both the inference procedure (due to sampling of the

frequency spectrum, for which we account using the

bootstrap procedure) and from uncertainty in the esti-

mate of the scaling factor NCO, for which we do not

account, but discuss here. Crude methods of estimating

effective population size tend to overestimate Ne, as

most biological factors reduce Ne relative to census N.

In particular, our consideration of how variance in

reproductive success reduces NCO likely underestimates

the true reduction because variance in survival among

egg clusters from individual females would introduce

additional variability among parents. Likewise, E. gil-

lettii, like many checkerspots, is highly sedentary, and

population structure could further reduce Ne relative to

census N (Williams 1988; Boggs et al. 2006). It is also

likely that there is additional error in dadi’s estimate

due to complex evolutionary forces including genetic

hitchhiking distorting the frequency spectrum relative

to assumed neutrality. Nevertheless, the fact that we

recover estimates of demographic parameters consistent

with known demographic history suggests that these

assumptions are not consequential for demographic

inference, at least in this particular case.

In many cases, researchers will not have pre-existing

knowledge of demographic history, yet will be inter-

ested in absolute estimates of demographic parameters

rather than coalescent units relative to Ne. In such cases,

estimates of Ne are often obtained from the population

genetic data by estimating the parameter h = 4Nel
(Watterson, 1975) and using literature-derived estimates

of the mutation rate l. Many estimates of h, however,

make the assumption of stable demographic history

and can be strongly biased under certain demographic

scenarios, including bottlenecks. A better approach

involves inferring h under a specified demographic

model, as implemented by dadi and other methods.

Mutation rate can also be estimated by performing

sequence alignment between the study species and a

closely related species: l = D/2T, where D is the pair-

wise sequence divergence and T is the divergence time

in units of generations.

Our study highlights the importance of fitting multi-

ple demographic models to test diverse demographic

scenarios. We found that the model likelihood was not

significantly improved by the addition of migration

parameters when we extended the population split

model to incorporate possible migration between WY

and CO (Fig. 2B). In all other cases, however, our

reported model likelihoods were not directly compara-

ble because they were fitted with different data sets.

We evaluated our models with v2 goodness-of-fit tests,

examining whether the frequency spectrum predicted

under our optimized demographic models were signifi-

cantly different than the data frequency spectrum. In

each case, we failed to reject the demographic models
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fit with synonymous data, suggesting that these demo-

graphic models captured important aspects of the true

demographic history.

In the third demographic model, we performed demo-

graphic inference using only the CO frequency spectrum,

finding that uncertainty in estimates of demographic

parameters was significantly greater than when includ-

ing data from the WY population. Because of correlated

effects on the allele frequency spectrum, bottleneck mag-

nitude and duration could not be disentangled from

these data. The addition of the WY data set (described

above) added sufficient information to simultaneously

infer these parameters. Upon fixing gCO at its optimized

value from two-dimensional demographic inference, we

estimated sSPLIT similar to the two-dimensional inference.

Uncertainty in the estimate increased, however, demon-

strating that the addition of data from the proxy ancestral

population improved precision. This result is not unex-

pected, as the joint frequency spectrum contains dramati-

cally more information than the frequency spectrum of

individual populations. For example, analysis of the

joint-frequency spectrum revealed that of 984 total SNPs

(discovered in either population and successfully geno-

typed in all 16 individuals), 866 were segregating in WY

while only 392 were segregating in CO. Without addition

of the WY data, the zero frequency class would be

excluded, and inference would be limited to the CO fre-

quency spectrum comprised of fewer markers. The joint-

frequency spectrum likewise contains information about

the magnitude of genetic drift by capturing the change in

allele frequencies since the populations’ divergence.

By contrasting inferences using synonymous data

with inferences using the entire joint-frequency spec-

trum of synonymous, nonsynonymous and UTR SNPs,

we show that natural selection distorts the frequency

spectrum and leads to inaccurate parameter estimates.

The fact that dadi overestimates parameters upon inclu-

sion of nonsynonymous and UTR SNPs is consistent

with the skew of these markers towards rare variants

compared with synonymous SNPs (Fig. S2). Signal in

the frequency spectrum is thereby confounded because

the excess of rare variants is a signature of population

expansion, but also purifying selection. We should note

that excluding nonsynonymous and untranslated SNPs

from our analysis would not entirely resolve this issue,

as purifying selection on synonymous sites as well draft

due to background and/or positive selection would be

reflected in the synonymous frequency spectrum. One

alternative to selecting only putative neutral sites is to

specify the distribution of selective effects and incorpo-

rate purifying selection in the demographic model itself

(Gutenkunst et al. 2009) (although see Messer & Petrov

(2013) for how this approach does not resolve the issue

in the case of linked selection).

We demonstrate that inferences of demographic

parameters are remarkably robust to both sample num-

ber and number of genetic markers. However, our

results are particular to the demographic history of this

system. For other systems with different demographic

histories, simulations like those that we present can be

useful during the planning stages of an experiment. By

simulating frequency spectra for a range of demo-

graphic scenarios, researchers can evaluate the neces-

sary number of samples and markers to achieve a given

level of confidence in parameter estimates.

The dadi approach is one of many approaches for

reconstructing demographic history using population

genomic data. We tested this approach on our data set

as it fits demographic models using the frequency spec-

trum alone, which simplifies the interpretation of infer-

ence results. The flexibility of the software also

facilitates various performance analyses. We remain

agnostic, however, to the question of whether alternative

methods would give consistent or potentially superior

results. For example, Gutenkunst et al. (2009) point out

that diffusion approximation assumes that N is large

and that frequency changes are small per generation, an

assumption that may be violated by an extreme bottle-

neck. The fact that we recover parameter estimates con-

sistent with known demographic history, however,

suggests that the approach is robust to this assumption

in this particular case. The demographic history of our

study population may be particularly easy to resolve

due to dramatic effects on the allele frequency spectrum,

whereas for other demographic scenarios that require

information about the distribution of rare alleles, larger

sample sizes will be required. Alternative approaches

may be more appropriate for inferring parameters of dif-

ferent demographic scenarios on different timescales.

For larger populations, the frequency spectrum contains

information about substantially older events, allowing

reconstruction of events occurring hundreds to thou-

sands of generations in the past (e.g. Molina et al. 2011).

Extreme bottlenecks introduce noise to the frequency

spectrum, erasing signatures of ancient events.

Positive controls are important for understanding the

circumstances under which demographic inference from

genomic data is sensitive to unrealistic model assump-

tions and simplifications as well as particular methods

of data generation. Our study provides one such posi-

tive control in a particularly well-studied system, dem-

onstrating that it is possible to recover estimates of

demographic parameters numerically consistent with

known demographic history. The ability to recover

information about past bottlenecks from patterns in

genetic data is particularly important because bottle-

necks increase the risk of population extinction

(Whitlock 2000). Our RNA-seq-based approach provides

© 2013 John Wiley & Sons Ltd
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a means to simultaneously perform marker discover

and multisample genotyping in systems with no exist-

ing genomic resources. We advocate more positive con-

trols in diverse ecological model systems, leveraging

detailed knowledge of species’ life history for demo-

graphic modelling. Meanwhile, application of this

multiplex RNA-seq approach in nonmodel species per-

mits the study of transcribed gene sequence and expres-

sion levels while also generating polymorphism data to

accurately infer recent bottlenecks. Together, these

analyses from genomic data can elucidate important

aspects of species’ ecology and conservation status.
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