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Abstract

Population genomic studies have shown that genetic draft and background selection can profoundly affect

the genome-wide patterns of molecular variation. We performed forward simulations under realistic gene-

structure and selection scenarios to investigate whether such linkage effects impinge on the ability of

the McDonald-Kreitman (MK) test to infer the rate of positive selection (α) from polymorphism and

divergence data. We find that in the presence of slightly deleterious mutations, MK estimates of α

severely underestimate the true rate of adaptation even if all polymorphisms with population frequencies

under 50% are excluded. Furthermore, already under intermediate rates of adaptation, genetic draft

substantially distorts the site frequency spectra at neutral and functional sites from the expectations under

mutation-selection-drift balance. MK-type approaches that first infer demography from synonymous sites

and then use the inferred demography to correct the estimation of α obtain almost the correct α in our

simulations. However, these approaches typically infer a severe past population expansion although

there was no such expansion in the simulations, casting doubt on the accuracy of methods that infer

demography from synonymous polymorphism data. We suggest a simple asymptotic extension of the

MK test that should yield accurate estimates of α even in the presence of linkage effects.
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Introduction

The relative importance of natural selection and random genetic drift in shaping molecular evolution

is a matter of a long-standing dispute. While the neo-Darwinian synthesis placed natural selection as

the dominant force (1), from the late 1960’s on it became popular to assume that the bulk of molecular

variation is selectively neutral or at most weakly selected (2). The “neutral theory” of molecular evolution

provided an elegant explanation for the maintenance of genetic variation and the apparent constancy of

the rate of molecular evolution. In addition, it enabled development of analytical approaches, based on the

diffusion approximation (3,4), for calculating the expected frequency spectra and fixation probabilities of

polymorphisms of varying selective effect. Most commonly used approaches for estimating fitness effects

of polymorphisms and demographic history rest upon these results.

Recent studies of population genomic data have strongly challenged key assumption of the neutral

theory. First, in many species the rate of adaptation appears to be very high with, for example, in

D.melanogaster more than 50% of the amino-acid changing substitutions, and similarly large proportions

of noncoding substitutions, driven to fixation by positive selection (5–8). Importantly, it appears that

recurrent adaptation strongly affects the genome-wide patterns of polymorphism (8–11). These results

imply that the dynamics of a given polymorphism is not only affected by genetic drift and purifying

selection acting at its particular site, but also by the so-called genetic draft (12), which describes the

stochastic effects generated by recurrent selective sweeps at closely linked sites. Second, there is accu-

mulating evidence that many polymorphisms in natural populations are slightly deleterious (13–16), and

such polymorphisms are expected to generate another kind of interference among linked sites, known as

background selection (17,18).

It is becoming increasingly clear that the assumption of independence between sites is violated to a

substantial degree in most cases in one way or another. What we do not yet fully understand is the extent

to which these violations affect population genetic methods and the conclusions about the parameters of

the evolutionary process inferred from such methods. It is entirely possible that their apparently wrong

assumptions have only a marginal effect on the ultimate estimation. It is also possible that the estimates

might be very strongly biased and generally unreliable.

Here, we focus on the investigation of one of the primary methods to test the neutral theory and

to estimate the rate of adaptation at the molecular level, introduced by McDonald and Kreitman in
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1991 (19). The McDonald-Kreitman (MK) test contrasts levels of polymorphism and divergence at neutral

and functional sites and uses this contrast to estimate the fraction of substitutions at the functional sites

that were driven to fixation by positive selection. The MK test has been applied in many organisms with

estimates of the rate of adaptation varying from extremely high in Drosophila (5–8) and E.coli (20), to

virtually zero in yeast (21) and humans (13,22). These differences might reflect true variation in the rate

of adaptation in different lineages or indicate that the test is biased to different extent, and possibly in

different direction, in those lineages (23).

By using closely interdigitated sites, the MK test is rather robust to many sources of error, such as

variation of mutation rate across the genome and variation in coalescent histories at different genomic

locations. It can be confounded, however, by slightly deleterious mutations and demography (23, 24).

Much work has thus gone into the development of sophisticated extensions of the MK test that use the

frequency distribution of polymorphisms to estimate the demographic history of the organism in question,

to assess the distribution of deleterious effects at the functional sites, and to correct for both in estimating

the rate of adaptation (13, 21, 25–32). Yet all of these extensions are still based on the assumption that

evolutionary dynamics at different sites can be modeled independently of each other. In the light of the

recent findings that genetic draft and background selection might often be important, it is essential to

verify that these methods are robust to the linkage effects from advantageous and weakly deleterious

polymorphisms and their interactions.

Unfortunately neither the current analytical nor numerical approaches based on efficient coalescent

simulations are capable of modeling the interactions among multiple linked selected sites. We therefore

employ large-scale forward simulations to study the effects of genetic draft and background selection on

the genomic patterns of variation. This framework allows us to incorporate arbitrary distributions of

fitness effects of new mutations and thus to analyze scenarios with different rates of adaptation, different

strengths of positive selection, and varying levels of background selection. We use our simulations to

evaluate the consistency and biases of the MK test and its extensions in re-inferring the evolutionary

parameters of our simulations from the observed population diversity and divergence data. Our results

reveal that the current approaches for the estimation of the rate of adaptation based on the MK test are

often severely biased. We discuss various approaches for correcting these errors and highlight remain-

ing challenges. We argue that population genetic methods that ignore linkage effects should often be

misleading when adaptation is frequent.
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Results

The MK test compares the levels of diversity at neutral and potentially functional sites with the levels of

divergence to evaluate whether neutral evolution can be rejected at the functional sites (19). An extension

of the MK test can be used to estimate the fraction of substitutions driven to fixation by positive selection

at the functional sites (23, 24): Consider the expected substitution rate at a neutral site, d0 = 2Nµπ0,

where π0 denotes the fixation probability of a neutral mutation (although π0 = 1/2N , the notation of π0

will be instructive). The rate of adaptive substitutions at a functional site, where new mutations may

have arbitrary selection coefficients s, can be written as the difference between the overall substitution

rate, minus the rate of non-adaptive substitutions:

d+ = d− 2Nµπ = d− d0
π

π0
. (1)

Here π specifies the average fixation probability of a non-adaptive (s ≤ 0) mutation at the functional

site. The fraction of adaptive substitutions is therefore

α =
d+
d

= 1− d0
d

π

π0
. (2)

The ratio d0/d can be inferred from sequence alignments in the neutral and functional regions, yet

estimating the ratio π/π0 is typically not straightforward. One commonly used approach is to assume

that most mutations in functional regions are either neutral or highly deleterious and thus restricted to

very low population frequencies (19), while beneficial mutations are rare and fix quickly. The observed

polymorphism in the functional regions will then primarily reflect the neutral proportion of the mutation

spectrum. Under this assumption, the ratio π/π0 can be approximated by the ratio p/p0 between the

levels of polymorphism per site in the test and the neutral reference region, yielding:

α ≈ 1− d0
d

p

p0
. (3)

A known problem of this approach are slightly deleterious mutations. While these mutations are still

unlikely to become fixed in the population, they could, however, contribute noticeably to p, thereby biasing

estimates of α downwards. To minimize this problem, it has been proposed to exclude polymorphisms
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that are below a certain cut-off frequency (30, 33); the higher this cut-off, the lower the proportion of

slightly deleterious polymorphisms in the sample. More sophisticated extensions of the MK test attempt

to infer the actual distribution of fitness effects (DFE) of new mutations at functional sites from the

site frequency spectrum (SFS) of polymorphisms at those sites, and then correct the estimates of α

accordingly.

To study the effects of linkage and selection on MK-type approaches for inferring the rate of adaptation

we conducted forward simulations of a 10 Mb-long chromosome with realistic gene structure, evolving

under mutation, recombination, and selection over the course of 106 generations. Over different simulation

runs we systematically varied the rate and strength of positive selection, as well as the strength of purifying

selection.

The simulated chromosome resembles a moderately gene-rich region of the human genome with approx-

imately 4% of its sites assumed to be functional (Materials and Methods). Note that functional density

varies strongly across eukaryotes, from a few percent of constrained sites in humans to upward of 50%

in Drosophila, and the effects of linked selection should become more pronounced with higher functional

density. Thus, if we find strong linkage effects in our scenario with only 4% functional density, we would

then expect even stronger effects in the functionally denser genomes such as those found in flies. In this

way, our scenario should be conservative for many eukaryotic species.

Mutations occurring at functional sites had their selection coefficients (s) drawn from a specified DFE,

while every fourth site in exons represented a neutral, synonymous site. We assumed a mutation rate of

µ = 2.5× 10−8 per site and generation, a recombination rate of r = 10−8 (corresponding to 1 cM/Mb),

and a panmictic population of size N = 104 (34, 35). These parameters are compatible with standard

estimates for human evolution, such as heterozygosity at synonymous sites: Hs = 4Nµ = 0.001. Note,

however, that rather than the absolute values of µ, r, N , and s, primarily the products Nµ (specifying

the overall rate at which new mutations arise in the population), Ns (specifying the effective strength

of selection), and the ratio s/r (determining the region over which a selective sweep affects the genome)

should matter in our analysis. We further required that the ratio of the substitution rate at functional

sites versus synonymous sites be d/d0 ≈ 0.25, the value found in humans (36) and similar to that of many

other species. This condition sets bounds on the amount of purifying selection at functional sites.

The key observables in MK-type approaches are the levels of polymorphism and divergence at neutral

and functional sites. Some approaches additionally take the SFS of polymorphism into account. In our
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simulations, we estimated divergence from the mutations that became fixed throughout a simulation

run. Polymorphism levels and frequency distributions were estimated from population samples of 100

randomly drawn chromosomes, taken every N generations throughout a run. The spectra were then

averaged over all 100 samples obtained during each run. Since our chromosome has 375 kb of functional

and 125 kb of synonymous sites, this corresponds to a single sample with 37.5 Mb of functional and 12.5

Mb of synonymous sites, assuming independence between samples.

In the following sections we study, in order, the effects of linkage and selection on the level of neutral

polymorphism, the actual SFS of neutral and functional polymorphisms, and the fixation probabilities of

deleterious mutations. At the end we analyze how all of these effects in combination affect the behavior

of the MK test and its extensions.

Linkage effects on levels of neutral polymorphism

It is well known that genetic draft and background selection reduce the levels of polymorphism at linked

neutral sites (18,37). Specifically, when strongly deleterious mutations occur at a rate µd per site, back-

ground selection should reduce neutral heterozygosity H0 by a factor ≈ exp(−2µd/r) (38,39). Similarly,

recurrent selective sweeps with selection coefficient sb occurring at rate ν per site should reduce H0 by

a factor ≈ (1 + 8K(N)νsb/r)
−1, where K(N) is a constant (10, 40). Under a Wright-Fisher model in

a diploid population of size N and free recombination, we expect: H0 = 4Nµ0. Linkage effects from

recurrent selective sweeps and background selection should then reduce H0 to:

H0 ≈ 4Nµ0 ×
e−2µd/r

1 + 8K(N)νsb/r
. (4)

To assess the accuracy of Eq. (4) we compared the level of heterozygosity Hs at synonymous sites in

our simulation with the predicted values. Functional mutations were of four types in our simulations:

neutral, beneficial, deleterious, and strongly deleterious. Each type had a specific selection coefficient:

sn = 0, sd, sb, and sl, respectively. We assumed that 40% of functional mutations are always strongly

deleterious (26, 28) and we set sl = −0.1. As free parameters we chose sb, sd, and α, which allowed

us to assess how different strengths of purifying selection (by varying the value of sd), positive selection

(by varying sb), and rate of adaptation (by varying α) affect our results. Values of α in our simulations

ranged from 0 to 0.5, sb from 0.001 to 0.05, and Nsd from -1 to -100 (Table S1).
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Fig. 1A shows that inferred and predicted levels of neutral heterozygosity are generally in good agree-

ment. Only when adaptation was very frequent and strong the predicted reduction in Hs is slightly

overestimated. The amount by which linkage effects reduce Hs is primarily determined by the product of

rate and strength of adaptation (Fig. 1A, inset). The contribution of background selection is typically less

severe and appears most pronounced for the very weakly deleterious selection coefficients, as indicated by

the observation that for the same value of αsb, the simulation runs with the weaker deleterious selection

coefficients (Nsd ≈ −1, darker points in the inset) yield stronger reduction of Hs.

Linkage effects on the SFS at functional and synonymous sites

In applications of the MK test and its extensions it is often not only the level of polymorphism that is

important, but also the SFS at functional and neutral sites. Some heuristic methods simply eliminate

low-frequency variants, while some, more sophisticated, methods try to infer the actual DFE at functional

sites from the SFS.

In the Wright-Fisher model under mutation-selection-drift balance and free recombination, the average

number of polymorphism where the derived allele is present at population frequency x is given by (41,42)

g(x, s) = 4Nµs
1− e−4Ns(1−x)

(1− x)x(1− e−4Ns)
. (5)

Here µs is the rate at which new mutations with selection coefficient s arise at the locus of interest

per generation per individual. Integrated over the full DFE of new mutations, as specified by a density

function ρ(s), the expected SFS for all polymorphism at the locus is then g(x) =
∫
g(x, s)ρ(s)ds.

It is well know that genetic draft and background selection can distort the SFS from this expectation (11,

15, 40, 43–47). What is not clear is whether the deviations are marked under realistic evolutionary

scenarios and whether this might affect population genetic methods based on the assumption of mutation-

selection-drift balance. We measured the SFS at functional and synonymous sites in our simulations and

compared it with the prediction under mutation-selection-drift balance given the DFE of the particular

simulation run. In an attempt to account for the reduction in overall levels of diversity and reduced

effectiveness of selection due to genetic draft and background selection, we replaced N in Eq. (5) by the

effective population size inferred from the level of heterozygosity at synonymous sites, Hs = 4Neµ0, in

the particular simulation run.
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The left plot in Fig. 1B shows the observed and expected SFS at functional and synonymous sites in

our simulations for a scenario with no adaptation but high levels of background selection (Nsd = −2).

Expected and observed spectra are in good agreement, suggesting that for the chosen recombination rate

(r = 10−8) and functional density (≈ 4% of the chromosome) the effects of background selection alone

are well approximated by mutation-selection-drift balance with Ne being adjusted to the value obtained

from the level of heterozygosity at neutral sites. This shows that in the presence of background selection

alone it should be possible to estimate the DFE at functional sites reasonably well.

However, deviations between observed and expected spectra become noticeable once adaptation be-

comes more frequent (Fig. 1B, middle plot). The right plot in Fig. 1B shows a scenario with frequent

adaptation (α = 0.5) and strong sweeps (sb = 0.05). Here the deviations between observed and expected

spectra are substantial at both synonymous and functional sites. Intermediate frequency polymorphisms

are depleted while there is an excess at high and low derived allele frequencies compared to the expec-

tation under mutation-selection-drift balance at both functional and neutral sites. These distortions do

not fit any model of mutation-selection-drift balance with a constant effective population size, suggesting

that methods that use such models to infer the DFE from the SFS at functional sites might run into

severe biases in the presence of even moderate levels of adaptation.

Linkage effects on fixation probabilities of deleterious mutations

Levels of divergence at functional and neutral sites are the other key parameters that are used in the

MK test and its extensions. Linked selection cannot affect the rate of neutral divergence as it is always

equal to the rate of mutation at neutral sites. The rate of divergence at functional sites, however, could

be affected substantially.

In the Wright-Fisher model under free recombination, a mutation with selection coefficient s that arises

in one individual of a diploid population of size N eventually fixes with probability:

π(s) =
1− e−2s

1− e−4Ns
. (6)

Genetic draft and background selection are expected to increase the fixation probabilities of deleterious

mutations: Under recurrent selective sweeps, deleterious mutations can hitchhike to frequencies they are

unlikely to reach under mutation-selection-drift balance alone, increasing their chance of fixation over
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that expected without linkage (16, 48). Similarly, background selection renders purifying selection less

effective by reducing the number of successfully reproducing individuals, thereby also increasing the

fixation probabilities of deleterious mutations (18,48,49).

One common approach for addressing these issues is to assume that Eq. (6) can still be used but that N

has to be replaced by a lower, effective population size Ne. However, it is not clear whether a single

scalar Ne applies over a range of selection coefficients. We tested this in our simulations by measuring

the fixation probabilities of deleterious mutations with different selection coefficients sb and then inferring

the corresponding values of Ne according to Eq. (6) for the different selection coefficients in the same

run independently. Every simulation run had a particular rate (α) and strength (sb) of adaptation, while

deleterious functional mutations had selection coefficients sb = −0.001, −0.0005, −0.0002, and −0.0001,

with all four classes being of equal proportion. The fraction of neutral mutations at functional sites was

again tuned to yield d/d0 ≈ 0.25.

Fig. 1B shows the inferred values of Ne according to Eq. (6) as a function of sd. Our results confirm that

genetic draft and background selection generally increase fixation probabilities of deleterious mutations,

as indicated by the fact that the inferred Ne is always smaller than the actual N = 104. However, in

the same simulation run different selection coefficients have very different values of inferred Ne. For

example, in the simulation run with sb = 0.001 and α = 0.17, the mutations with sd = 0.0001 fix with a

probability that corresponds to Ne ≈ 8500, while the mutations with sd = 0.001 yield Ne ≈ 5500. For

stronger sweeps and higher α the discrepancies become even more profound. In none of the investigated

scenarios we found a scalar Ne that works for all four deleterious selection coefficients.

Note that because N enters Eq. (6) exponentially, differences in N yield substantial differences in

the actual fixation probabilities. In the above scenario, for instance, the 30% difference between Ne ≈

5500 and Ne ≈ 8500 corresponds to an approximately 400-fold difference in the fixation probability for

mutations with sd = −0.0005. Note also that Ne according to the fixation probabilities of deleterious

mutations is typically much lower than Ne inferred from the levels of neutral heterozygosity according to

Hs = 4Neµ, except for very weakly deleterious mutations.

These results indicate that there is no scalar transformation of Ne that would allow us to estimate

fixation probabilities across multiple fitness classes. Thus, even if we were to know the true DFE at

functional sites, it would still be impossible to use mutation-selection-drift methods to predict the rate

of fixation of deleterious mutations under scenarios that include even moderate amounts of genetic draft.
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MK estimates of the rate of adaptation

In the previous sections we have shown that linked selection can affect the key quantities in the MK test

in complex ways that do not fit the predictions under mutation-selection-drift balance. However, some of

the errors partially compensate for each other in the context of the MK test. For example, genetic draft

might cause deleterious mutations to appear virtually neutral in the polymorphism data (they could be

present at unexpectedly high frequencies) but would also elevate their probabilities of fixation to that of

neutral mutations. It is thus possible that the effects we described above might generally not affect MK

estimates of α strongly.

Our simulations allow us to explicitly test the accuracy of MK estimates of α inferred from Eq. (3).

Fig. 2 shows the comparison of true values and MK estimates for all simulation runs from Table S1.

Polymorphism levels p and p0 were again calculated from samples of 100 genomes drawn every N gener-

ations; substitution rates d and d0 were inferred from the mutations that became fixed over the course of

a simulation run. To minimize the bias generated by slightly deleterious polymorphisms, we considered

only polymorphisms with a derived allele frequency of x ≥ 0.1 (Figure 2, left panel) or x ≥ 0.5 (Figure

2, right panel) in the samples. Our results demonstrate that MK estimates of α under both cut-offs still

tend to underestimate α, often substantially. For example, when the true α = 0.4, the MK estimate

using a cut-off x ≥ 0.1 yields a negative value of −0.2 for a scenario where sb = 0.001 and Nsd = −1.

Increasing the cut-off from x ≥ 0.1 to x ≥ 0.5 reduces this discrepancy, but substantial errors remain. In

the above scenario with α ≈ 0.4 the MK estimate still yields only α ≈ 0.18.

The underestimation of α is generally more pronounced when deleterious mutations are only weakly

deleterious than when they are strongly deleterious. This is consistent with weakly deleterious mutations

having a higher chance of contributing to polymorphism than strongly deleterious mutations, but still

having low probabilities of fixation, thus yielding higher overestimates for π/π0 based on p/p0. Strongly

deleterious mutations contribute to neither polymorphism nor divergence and thus do no bias estimates of

α. As strength of positive selection increases, the biases due to weakly deleterious mutations can be mit-

igated to some extent because now they become effectively neutral and contribute to both polymorphism

and divergence.
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DFE-based extensions of the MK approach

Several methods for correcting possible biases in MK estimates have been proposed that go beyond the

simple exclusion of low-frequency polymorphisms. These methods aim to first estimate the DFE at

functional sites and then calculate how many non-adaptive mutations are expected to become fixed given

the inferred DFE (13, 14, 25–28, 31). Any excess of substitutions should be attributable to adaptation.

Some approaches additionally aim to correct for possible effects of demography, which is first inferred

from the SFS at synonymous sites and then used for correcting the SFS at functional sites (27,28,50).

One particularly popular such method is DFE-alpha by Eyre-Walker and Keightley (31). Here we

investigate the performance of this method as a representative of the class of methods based on the same

paradigm (13, 14, 25–28, 31). DFE-alpha models the DFE at functional sites by a gamma distribution,

specified by the mean strength of selection, γ = −Nes, and a shape parameter β, allowing the distribution

to take on a variety of shapes ranging from leptokurtic to platykurtic. DFE-alpha incorporates two simple

demographic models: (i) constant population size and (ii) a single, instantaneous change in population

size from an ancestral size N1 to a present-day size N2 having occurred t generations ago. Provided

the SFS at both neutral and functional sites and the respective levels of divergence, DFE-alpha infers

γ, β,N2/N1, t, and α at functional sites.

We applied DFE-alpha to polymorphism and divergence data from our simulations (Materials and

Methods). For this analysis, we modified our simulations such that the selection coefficients of the

non-adaptive mutations at functional sites were drawn from a gamma-distribution and thus the same

distribution was used in the simulations that is assumed by DFE-alpha. We chose a shape parameter of

β = 0.2, resembling empirical estimates from polymorphism data at non-synonymous sites in humans (14,

27,28). We varied α from 0 to 0.5 and investigated two scenarios with sb = 0.001 or sb = 0.01. The mean

of the DFE was tuned for each scenario such that d/d0 ≈ 0.25. Throughout our simulations population

size was always kept constant at N = 104 individuals.

Table 1 shows the performance of DFE-alpha under its two demographic models. When using the

correct model of constant population size, DFE-alpha systematically overestimates α and underestimates

the strength of selection against deleterious mutations. The shape parameter β of the gamma distribution

is overestimated by almost two-fold under strong and frequent adaptation. These biases are generally

more pronounced for the scenarios with stronger sweeps than for those with weaker sweeps. Under the

model with a population size change, the estimates of α and β become more accurate (within ±0.05
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of true values) but the mean strength of selection against deleterious mutations is now overestimated

by roughly 50%. Strikingly, under this model DFE-alpha always infers a substantial population size

expansion while there was no such expansion in our simulation.

This behavior of DFE-alpha is consistent with the fact that genetic draft leaves signatures in the SFS

similar to those observed under a recent population size expansion, namely a skew towards low-frequency

polymorphisms. The extent of this effect, however, is alarming, given that even for a scenario where α is

only about 0.1 already an almost 10-fold population size expansion is inferred by DFE-alpha (which is a

built-in limit of DFE-alpha as currently implemented). Note that even in the scenario with no adaptation

DFE-alpha still infers a 5-fold population size expansion, implying that background selection alone can

already bias demographic inference.

Thus, it appears that methods such as DFE-alpha, where a demographic model is first fit to the SFS at

synonymous sites, indeed infer reasonable estimates of α while entirely misinterpreting demography and

also overestimating the strength of purifying selection. The reason seems to be that the correction for

demography these approach attempt to provide, in our scenario with a constant population size, instead

serves as a correction for the effects of genetic draft on the SFS. This correction can work well for the

estimation of α but not for the estimates of the strength of purifying selection.

Discussion

It is well known that linkage effects among loci, such as genetic draft and background selection, can

affect the patterns and dynamics of molecular variation (16–18, 40, 43–45, 48, 49, 51). In this study, we

have used forward simulations that explicitly incorporate linkage and selection on a chromosome-wide

scale to investigate quantitatively how linked selection biases common population genetics methods. We

specifically tested the performance of the MK test and its extensions to infer the rate of adaptation.

Consistently with previous results (30), we found that MK estimates of the rate of adaptation can be

severely biased in the presence of slightly deleterious mutations and generally underestimate α. Unfortu-

nately our analysis shows that the standard approaches to address this known problem do not typically

resolve it:

(i) The simple heuristic approach, where low-frequency polymorphisms are excluded from the analysis,

renders MK estimates more accurate, but a substantial bias remains (Fig. 2). The reason for this is that
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the dynamics of slightly deleterious polymorphisms under recurrent selective sweeps can be very different

from the expectation under the diffusion model, which predicts that frequent mutations should have

a realistic chance of eventually reaching fixation. However, under recurrent selective sweeps a slightly

deleterious mutation can easily hitchhike to substantial population frequencies yet become unlinked during

the late phase of a sweep. This deleterious mutation can then spend substantial time as a frequent

polymorphism in the population while it slowly declines in frequency. At every stage of this process, the

frequency of the mutation substantially overestimates its fixation probability. Such mutations are not

effectively removed from a population sample by excluding low-frequency polymorphisms.

(ii) Modern extensions of the MK test aim to address the problem of slightly deleterious mutations

by estimating the actual contributions of deleterious mutations to polymorphism and divergence. We

found that these approaches misestimate the mean and the shape of the DFE and, as a result, tend to

overestimate the rate of adaptation (Table 1). This is not surprising given that such approaches infer

the DFE at functional sites by fitting the observed SFS to that predicted under mutation-selection-drift

balance, which can be substantially distorted by linkage effects (Fig. 1C).

(iii) The most sophisticated extensions of the MK test available today additionally attempt to correct

for demography. These approaches try to infer demographic history from the SFS at putatively neutral

(typically synonymous) sites, and this demography is then incorporated into the estimation procedure

for the DFE at functional sites. Interestingly, we found that such methods obtain accurate estimates of

the rate of adaptation while inferring erroneous demography and also inaccurate estimates of the mean

strength of purifying selection against functional mutations (Table 1). This seeming contradiction reflects

the fact that the distortions of the SFS at synonymous sites, which these methods interpret to be due to

demography, can in fact be due to genetic draft. As we have shown in Fig. 1C, these distortions are very

similar at synonymous and functional sites. Thus, by imposing a demographic scenario that corrects for

distortions of the SFS at synonymous sites, the methods also correct the SFS at functional sites.

The fact that methods such as DFE-alpha seem to obtain accurate estimates of α under a “demographic

correction”, suggests that a simple heuristic extension of the standard MK test, where the effects of

genetic draft on the SFS at synonymous and functional sites are simply divided out, might already

provide reasonable estimates without having to invoke demography. To illustrate such an approach, let

us define α(x) as a function of the frequency of the derived mutations:
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α(x) = 1− d0
d

p(x)

p0(x)
. (7)

Here p(x) and p0(x) are the numbers of polymorphism at functional and synonymous sites, respectively,

with derived allele at frequency x. Because α(x) depends only on the ratio p(x)/p0(x), any biases affecting

the SFS at functional and synonymous sites in the same way, regardless whether due to demography or

genetic draft, effectively cancel out. Furthermore, we can extrapolate α(x) to x → 1, where it should

asymptotically converge to the true α, assuming that adaptive mutations do not significantly contribute

to polymorphism and that purifying selection has been sufficiently stable over time.

As a proof of principle, we show in Fig. 3A that this simple heuristic extension of the MK approach

indeed converges asymptotically to the true value of α in our simulations, even in a scenario with a high

rate of adaptation (α = 0.42), strong sweeps (sb = 0.01), and slightly deleterious mutations (Nsd = −2).

While it is not straightforward to predict the precise functional form of α(x), which will depend on

the specific DFE, fitting an exponential approximation of the form α(x) ≈ a + b exp (−cx) seems to

work reasonably well. Fig. S1 shows the comparison between asymptotic MK estimates obtained by this

procedure and the true values of α for all simulation runs from Supplementary Table S1. In Fig. 3B

we compare the true values of α for all simulation runs from Table 1, the respective standard MK

estimates using a cut-off of x ≥ 0.1, and the estimates from DFE-alpha under its two demographic models.

The asymptotic MK estimates no longer suffer from a systematic downward bias due to deleterious

mutations and are much more accurate than standard MK estimates, as well as estimates from DFE-

alpha without the “demographic correction”. They are similarly accurate to estimates from DFE-alpha

with the correction.

In order to further verify that this simple asymptotic MK approach yields similar results as the more

complex approaches invoking “demographic correction” and estimation of the DFE, we applied asymp-

totic MK to previously analyzed polymorphism and divergence data from D. melanogaster and humans

(Fig. 3C). The human data consists of 11, 000 protein-coding regions that had been resequenced by Celera

Genomics in 20 European American individuals (13). After excluding polymorphisms with frequencies

below 10% or above 90%, we obtained an asymptotic MK estimate of α = 0.13 (0.09, 0.19) for this data.

This is consistent with the range of α = 0.1−0.2 estimated in (28). Note that the standard MK estimate

for this data when excluding all polymorphisms with sample-frequencies below 10% yields a negative
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value α = −0.05. For D. melanogaster, we obtained an estimate of α = 0.57 (0.54, 0.60) using polymor-

phism data from 162 inbred lines derived from Raleigh, North Carolina by the D.melanogaster Genetic

Reference Panel (52). This estimate is similar, although somewhat higher, than previously estimated

values obtained from earlier polymorphism data sets in this species (5–8,52).

The results presented in this study have important ramifications for the inference of evolutionary

parameters from polymorphism and divergence data. It appears that despite the complexity of the

process, we do have means of estimating the rate of adaptive evolution by using DFE-alpha like approaches

with the “demographic correction” or use the simple asymptotic MK test we suggested above. It is

important to consider that the standard MK approach with or without excluding rare polymorphisms

produces severely biased estimates under many scenarios and even when adaptation is not pervasive.

Unfortunately, estimation of the DFE and, especially, of demography tend to be severely affected

by already moderate amounts of genetic draft and background selection. Estimating demography from

neutral sites that are close to functional ones (such as synonymous sites) should in general lead to

erroneous inference of population expansions. One solution would be to use regions that have very low

functional density and a high recombination rate for such inference. It remains to be determined which

genomic regions are appropriate in this way, for example in the human genome.

Our analysis suggest that in the presence of genetic draft and background selection the evolutionary

interactions among linked polymorphisms of different selective effects are complex and consequential. It

is clear that the standard diffusion approximation that attempts to model evolution at different sites

independently and wrap the complexity of linkage effects among sites into effective parameters such

as Ne, can introduce massive errors into the estimation of key population genetic parameters. We thus

believe that new analytics need to be developed that correct for linkage effects. When diffusion fails,

other approaches such as stochastic jump processes might succeed. It is also important to develop

new approaches that use forward simulations under realistic scenarios of genetic draft and background

selection to estimate evolutionary parameters of interest. At the very least, one has to verify with forward

simulations, such as the one presented here (SLiM) or similar programs (53–55), that commonly used

heuristic and analytic methods in population genetics are robust to linkage effects.
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Materials and Methods

Forward simulations of chromosome evolution

Our simulations model the population dynamics of a 10 Mb-long chromosome evolving in a panmictic

diploid population under mutation, recombination, and selection. Genes are placed equidistantly on the

chromosome with a density of one gene per 40 kb (36). Each gene consists of 8 exons of length 150 bp

each, separated by introns of length 1.5 kb. Genes are flanked by a 550 bp-long 5’ UTR and a 250 bp-long

3’ UTR. We assume that three out of four sites in exons and UTRs are functional sites. Every 4th site in

exons and UTRs is non-functional with all mutations at those sites being neutral. These non-functional

sites are used to model synonymous sites. Mutations occurring outside of exons or UTRs are neutral.

Altogether, this yields a functional fraction of 3.75% of the chromosome.

For each chromosome we store the list of mutations it harbors, with each mutation being specified

by its position along the chromosome and its selection coefficient. The population consists of N = 104

diploid individuals. We assume that mutations are codominant and that fitness effects at different sites

in the genome are additive. The fitness of an individual is thus given by w = 1 +
∑
i si, where the sum

is taken over the selection coefficients, si, of all mutations on its two chromosomes.

Population dynamics is simulated in a model with discrete generations and constant population size.

In each generation, a set of N = 104 children is newly generated. The two parents of each child are

drawn from the population in the previous generation with probabilities proportional to their fitnesses.

To generate the haploid gamete a parent contributes to the child, the two parental chromosomes undergo

recombination at a uniform rate of r = 10−8 per site along the chromosome (corresponding to 1 cM/Mb).

Each gamete then undergoes mutation, where new mutations occur at a rate µ = 2.5 × 10−8 per site

per generation uniformly along the chromosome. Only the mutations which fall into exons or UTRs are

followed in our simulations.

While every mutation has a specific position along the chromosome, the simulation makes an infinite

sites assumption in the sense that a chromosome can harbor more than one mutation at the same site

and that back-mutations do not occur. Given our population parameter Nµ = 2.5 × 10−4, the choice

of an infinite sites model is well justified. The simulation does not model the actual nucleotide states of

mutations. The selection coefficient of each new mutation, if it falls at a functional site, is drawn from a

specific DFE. Mutations that fall at non-functional sites always have s = 0. After all N = 104 children
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have been generated this way, their fitnesses are calculated and they become the parents for the next

generation.

At the start of a simulation run all individuals are initialized with empty chromosomes since no muta-

tions have yet occurred. The simulations then go through a burn-in period of 10N generations to establish

a stationary level of diversity. Every 100 generations the population is screened for fixed mutations, i.e.,

mutations that are present in all individuals of the population. These mutations are recorded as sub-

stitutions and removed from all chromosomes for they can no longer cause fitness differences between

individuals. A simulation run is followed for 106 generations after the burn-in.

The simulation is implemented in C++, making extensive use of algorithms from the GNU scientific

library (56). An extended version of the simulation is implemented in the open-source program SLiM,

which can be downloaded from the author’s homepage at: www.stanford.edu/∼messer/software. The

website also provides a comprehensive documentation for the program and several application examples.

DFE-alpha estimation on simulation data

We ran DFE-alpha for each of the simulation runs specified in Table 1 using the online server provided at:

http://homepages.ed.ac.uk/eang33/software. These runs simulated the evolution of the above described

10 Mb-long chromosome in a population of N = 104 diploid individuals over the course of 106 generations

under the specific selection scenario. The SFS at functional and synonymous sites were calculated from

samples of 100 randomly drawn chromosomes, taken every N generations in a simulation run. The SFS

obtained from each sample were then averaged over all 100 samples taken throughout each run to generate

the unfolded spectra provided to DFE-alpha. Since our 10 Mb-long chromosome has 375 kb of functional

and 125 kb of synonymous sites, this corresponds to a single sample with 37.5 Mb of functional and 12.5

Mb of synonymous sites, assuming independence between samples. Divergence counts at functional and

synonymous sites were inferred from the observed substitutions in each simulation run.

Asymptotic MK estimation in humans and flies

Human polymorphism and divergence data are based on the re-sequencing of 11,404 protein coding-genes

in 20 European American individuals and were obtained from Table S2 in (28). A detailed description

of the sequencing is provided in (13). Polymorphism data for D.melanogaster was obtained from the

genome sequences of 162 inbred lines derived from Raleigh, North Carolina (52). Only coding regions
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with sequence information for at least 130 strains and one-to-one orthologs across the 12 Drosophila

species tree (57) were considered in our analysis. Each SNP was down-sampled to 130 strains and

SNPs that were no longer polymorphic after the down-sampling were removed. Divergence data with

D. simulans was obtained from PRANK alignments of the 12 Drosophila species. Ancestral SNP states

were determined via parsimony to D. simulans. Functional annotation was obtained from Flybase release

5.33 (58).
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simulation values DFE α (constant N) DFE α (step-change)

sb α γ β α γ β α γ β N2/N1 t/N2

- 0.00 448 0.2 0.12 297 0.26 0.00 703 0.21 5.0 6.2
0.001 0.05 434 0.2 0.20 264 0.27 0.07 676 0.21 5.0 5.4
0.001 0.09 437 0.2 0.22 288 0.26 0.09 914 0.20 8.8 5.2
0.001 0.18 441 0.2 0.27 265 0.27 0.15 754 0.21 8.8 5.4
0.001 0.28 422 0.2 0.40 276 0.27 0.29 1055 0.20 10.0 4.6
0.001 0.37 836 0.2 0.50 354 0.28 0.41 1250 0.21 10.0 4.7
0.001 0.49 1638 0.2 0.57 532 0.29 0.48 2438 0.21 10.0 4.2
0.01 0.06 424 0.2 0.24 233 0.27 0.11 635 0.21 5.0 4.9
0.01 0.09 424 0.2 0.26 217 0.29 0.12 675 0.22 10.0 4.7
0.01 0.18 381 0.2 0.40 152 0.31 0.24 654 0.21 10.0 3.5
0.01 0.27 339 0.2 0.49 109 0.34 0.31 618 0.21 10.0 2.8
0.01 0.36 652 0.2 0.58 158 0.35 0.43 1113 0.22 10.0 2.6
0.01 0.47 1154 0.2 0.68 182 0.38 0.53 1802 0.22 10.0 2.1

Table 1. Performance of DFE-alpha under its two demographic models. Each row is a particular

simulation run with the evolutionary parameters specified in the left four columns. The average strength

of purifying selection, γ = −4Nes, was calculated from the mean of the DFE used in the simulation and

Ne inferred from heterozygosity at synonymous sites. The middle three columns show the estimates from

DFE-alpha under the demographic model with constant population size. The last five columns show the

estimates under the demographic model with a single population size change. N2/N1 is the inferred ratio

between present and ancient population size, t is the estimated time since the population size change.
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Fig. 1. (A) Observed levels of heterozygosity at synonymous sites in our simulations compared with

the predicted level according to Eq. (4) for each simulation run. The inset shows Hs as a function of

αsb. (B) SFS at functional and synonymous sites in three different simulation runs. Symbols show the

observed numbers of polymorphisms per site averaged over all population samples taken throughout the

run. Lines show the expected spectra under mutation-selection-drift balance using the value of Ne inferred

from heterozygosity at synonymous sites. Expected spectra were corrected for binomial sampling. The

left plot shows the results for a run with no adaptation and strong background selection, the middle plot

shows a scenario with an intermediate rate of adaptation, the right plot shows a scenario with frequent

and strong adaptation. (C) Effective population sizes estimated from the observed fixation probabilities

of deleterious mutations according to Eq. (6). The left plot shows three simulation runs with different

rates of adaptation and sb = 0.01. The right plot shows three runs with weaker strength of positive

selection (sb = 0.001). The four different deleterious selection coefficients always yield very different

values of Ne. Dashed lines indicate the value of Ne inferred from the level of synonymous heterozygosity

according to Hs = 4Neµ0. Error bars are Pearson 95% confidence intervals assuming that fixations of

deleterious mutations are described by a Poisson process.
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Fig. 2. Comparison of the true values of α and MK estimates according to Eq. (3) obtained from the

observed levels of polymorphism and divergence at synonymous and functional sites in all simulation runs

from Table S1. On the left, results are shown for a cut-off derived allele frequency of x ≥ 0.1. On the

right, results are shown for a cut-off x ≥ 0.5.
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Fig. 3. (A) Asymptotic MK estimation for a simulation run with sb = 0.01, sd = −0.0002, and α = 0.42.

The standard MK estimate using a cutoff x ≥ 0.1 yields α = 0.08 (dashed black line). The asymptotic

MK estimate yields α = 0.38 and was obtained by fitting an exponential function α(x) = a+ b exp (−cx)

for all x ≥ 0.1 using nonlinear least-squares and extrapolating to x = 1 (dashed red line). The grey bar

denotes the area between the 5% and 95% quantiles obtained from 1000 bootstrap samples (the observed

values α(xi) were resampled and the resampled sets were then fit). (B) Comparison of true values of α for

the simulation runs from Table 1 with DFE-alpha estimates under its two demographic models, standard

MK estimates using a cutoff-frequency x ≥ 0.1, and asymptotic MK estimates. Circles show data for

runs with sb = 0.01, squares show the data for runs with sb = 0.001. (C) Asymptotic MK estimation at

nonsynonymous sites in humans and Drosophila. The dashed black lines show the respective standard

MK estimates using a cutoff x ≥ 0.1 and grey bars again denote the areas between the 5% and 95%

quantiles obtained from 1000 bootstrap replicates.
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Table S1

ρb sb sd true α MK α (0.1) MK α (0.5)

0.000000 na -0.0001 0.00 -0.55 -0.16
0.000000 na -0.0002 0.00 -0.27 -0.01
0.000000 na -0.0005 0.00 -0.01 0.03
0.000000 na -0.001 0.00 0.01 0.00
0.000000 na -0.002 0.00 -0.01 -0.01
0.000000 na -0.005 0.00 -0.01 -0.01
0.000000 na -0.01 0.00 -0.02 -0.02
0.000625 0.001 -0.0001 0.08 -0.43 -0.07
0.000625 0.001 -0.0002 0.10 -0.21 0.06
0.000625 0.001 -0.0005 0.10 0.02 0.06
0.000625 0.001 -0.001 0.09 0.08 0.08
0.000625 0.001 -0.002 0.09 0.08 0.08
0.000625 0.001 -0.005 0.08 0.03 0.05
0.000625 0.001 -0.01 0.10 0.10 0.12
0.000125 0.005 -0.0001 0.09 -0.46 -0.06
0.000125 0.005 -0.0002 0.10 -0.21 0.05
0.000125 0.005 -0.0005 0.10 0.05 0.13
0.000125 0.005 -0.001 0.10 0.06 0.07
0.000125 0.005 -0.002 0.10 0.10 0.10
0.000125 0.005 -0.005 0.08 0.14 0.13
0.000125 0.005 -0.01 0.10 0.12 0.14
0.000063 0.01 -0.0001 0.09 -0.38 -0.04
0.000063 0.01 -0.0002 0.09 -0.20 0.09
0.000063 0.01 -0.0005 0.10 0.05 0.12
0.000063 0.01 -0.001 0.09 0.05 0.06
0.000063 0.01 -0.002 0.10 0.13 0.12
0.000063 0.01 -0.005 0.10 0.09 0.09
0.000063 0.01 -0.01 0.10 0.10 0.09
0.000013 0.05 -0.0001 0.07 -0.35 -0.03
0.000013 0.05 -0.0002 0.08 -0.21 0.04
0.000013 0.05 -0.0005 0.09 0.04 0.11
0.000013 0.05 -0.001 0.09 0.10 0.13
0.000013 0.05 -0.002 0.09 0.12 0.12
0.000013 0.05 -0.005 0.10 0.07 0.09
0.000013 0.05 -0.01 0.09 0.09 0.10
0.001250 0.001 -0.0001 0.17 -0.32 0.07
0.001250 0.001 -0.0002 0.19 -0.14 0.14
0.001250 0.001 -0.0005 0.19 0.11 0.17
0.001250 0.001 -0.001 0.17 0.18 0.15
0.001250 0.001 -0.002 0.19 0.13 0.12
0.001250 0.001 -0.005 0.18 0.18 0.16
0.001250 0.001 -0.01 0.18 0.19 0.15
0.000250 0.005 -0.0001 0.18 -0.34 0.04
0.000250 0.005 -0.0002 0.20 -0.14 0.18
0.000250 0.005 -0.0005 0.20 0.12 0.15
0.000250 0.005 -0.001 0.19 0.18 0.17
0.000250 0.005 -0.002 0.19 0.20 0.20
0.000250 0.005 -0.005 0.18 0.17 0.18
0.000250 0.005 -0.01 0.18 0.18 0.20
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ρb sb sd true α MK α (0.1) MK α (0.5)

0.000125 0.01 -0.0001 0.16 -0.27 0.07
0.000125 0.01 -0.0002 0.18 -0.13 0.16
0.000125 0.01 -0.0005 0.19 0.11 0.18
0.000125 0.01 -0.001 0.21 0.17 0.19
0.000125 0.01 -0.002 0.18 0.16 0.17
0.000125 0.01 -0.005 0.19 0.21 0.19
0.000125 0.01 -0.01 0.20 0.17 0.17
0.000025 0.05 -0.0001 0.13 -0.16 0.04
0.000025 0.05 -0.0002 0.16 -0.15 0.09
0.000025 0.05 -0.0005 0.18 0.06 0.19
0.000025 0.05 -0.001 0.18 0.18 0.20
0.000025 0.05 -0.002 0.18 0.19 0.19
0.000025 0.05 -0.005 0.19 0.20 0.17
0.000025 0.05 -0.01 0.18 0.18 0.16
0.001875 0.001 -0.0001 0.26 -0.32 0.08
0.001875 0.001 -0.0002 0.28 -0.09 0.23
0.001875 0.001 -0.0005 0.28 0.20 0.23
0.001875 0.001 -0.001 0.29 0.25 0.23
0.001875 0.001 -0.002 0.28 0.24 0.21
0.001875 0.001 -0.005 0.28 0.25 0.24
0.001875 0.001 -0.01 0.29 0.27 0.26
0.000375 0.005 -0.0001 0.24 -0.26 0.12
0.000375 0.005 -0.0002 0.29 -0.09 0.21
0.000375 0.005 -0.0005 0.29 0.22 0.26
0.000375 0.005 -0.001 0.29 0.30 0.27
0.000375 0.005 -0.002 0.29 0.27 0.28
0.000375 0.005 -0.005 0.29 0.26 0.24
0.000375 0.005 -0.01 0.26 0.30 0.25
0.000188 0.01 -0.0001 0.24 -0.23 0.12
0.000188 0.01 -0.0002 0.27 -0.06 0.22
0.000188 0.01 -0.0005 0.27 0.20 0.26
0.000188 0.01 -0.001 0.28 0.28 0.27
0.000188 0.01 -0.002 0.29 0.27 0.29
0.000188 0.01 -0.005 0.30 0.28 0.27
0.000188 0.01 -0.01 0.29 0.27 0.26
0.000038 0.05 -0.0001 0.17 -0.05 0.14
0.000038 0.05 -0.0002 0.23 -0.06 0.17
0.000038 0.05 -0.0005 0.28 0.15 0.26
0.000038 0.05 -0.001 0.28 0.27 0.28
0.000038 0.05 -0.002 0.28 0.27 0.27
0.000038 0.05 -0.005 0.28 0.30 0.31
0.000038 0.05 -0.01 0.30 0.31 0.31
0.002500 0.001 -0.0001 0.35 -0.22 0.15
0.002500 0.001 -0.0002 0.40 -0.02 0.29
0.002500 0.001 -0.0005 0.37 0.29 0.30
0.002500 0.001 -0.001 0.38 0.34 0.30
0.002500 0.001 -0.002 0.39 0.33 0.29
0.002500 0.001 -0.005 0.38 0.35 0.29
0.002500 0.001 -0.01 0.38 0.36 0.32
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ρb sb sd true α MK α (0.1) MK α (0.5)

0.000500 0.005 -0.0001 0.30 -0.18 0.21
0.000500 0.005 -0.0002 0.38 0.01 0.32
0.000500 0.005 -0.0005 0.39 0.29 0.37
0.000500 0.005 -0.001 0.39 0.38 0.36
0.000500 0.005 -0.002 0.39 0.36 0.35
0.000500 0.005 -0.005 0.38 0.37 0.39
0.000500 0.005 -0.01 0.37 0.37 0.37
0.000250 0.01 -0.0001 0.30 -0.16 0.17
0.000250 0.01 -0.0002 0.34 0.04 0.34
0.000250 0.01 -0.0005 0.38 0.29 0.38
0.000250 0.01 -0.001 0.38 0.37 0.38
0.000250 0.01 -0.002 0.39 0.38 0.35
0.000250 0.01 -0.005 0.36 0.36 0.36
0.000250 0.01 -0.01 0.37 0.38 0.33
0.000050 0.05 -0.0001 0.21 0.01 0.15
0.000050 0.05 -0.0002 0.27 0.04 0.21
0.000050 0.05 -0.0005 0.35 0.20 0.28
0.000050 0.05 -0.001 0.38 0.33 0.39
0.000050 0.05 -0.002 0.38 0.39 0.39
0.000050 0.05 -0.005 0.37 0.38 0.37
0.000050 0.05 -0.01 0.36 0.40 0.36
0.003125 0.001 -0.0001 0.41 -0.20 0.18
0.003125 0.001 -0.0002 0.48 0.04 0.36
0.003125 0.001 -0.0005 0.46 0.32 0.37
0.003125 0.001 -0.001 0.47 0.42 0.40
0.003125 0.001 -0.002 0.47 0.44 0.40
0.003125 0.001 -0.005 0.48 0.41 0.39
0.003125 0.001 -0.01 0.47 0.43 0.40
0.000625 0.005 -0.0001 0.39 -0.11 0.25
0.000625 0.005 -0.0002 0.43 0.10 0.40
0.000625 0.005 -0.0005 0.48 0.38 0.47
0.000625 0.005 -0.001 0.49 0.46 0.46
0.000625 0.005 -0.002 0.50 0.47 0.47
0.000625 0.005 -0.005 0.48 0.43 0.44
0.000625 0.005 -0.01 0.47 0.48 0.45
0.000313 0.01 -0.0001 0.33 -0.11 0.23
0.000313 0.01 -0.0002 0.42 0.08 0.36
0.000313 0.01 -0.0005 0.48 0.35 0.46
0.000313 0.01 -0.001 0.48 0.45 0.49
0.000313 0.01 -0.002 0.49 0.50 0.47
0.000313 0.01 -0.005 0.48 0.47 0.48
0.000313 0.01 -0.01 0.48 0.48 0.46
0.000063 0.05 -0.0001 0.25 0.06 0.18
0.000063 0.05 -0.0002 0.31 0.07 0.25
0.000063 0.05 -0.0005 0.42 0.28 0.41
0.000063 0.05 -0.001 0.47 0.40 0.46
0.000063 0.05 -0.002 0.49 0.47 0.47
0.000063 0.05 -0.005 0.47 0.46 0.50
0.000063 0.05 -0.01 0.47 0.48 0.46

DFE parameters, true values of α, and MK estimates of α under the two cutoff frequencies 0.1 and 0.5
for all simulation runs from Figs. 1A and 2. The value of ρb specifies the fraction of adaptive mutations
among all functional mutations.
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Figure S1

●

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

●

●

●
●●

●

●●

●
●

●

●●

● ●

●

●

●

●
●

●

●

●●

●

true   αα

as
ym

pt
ot

ic
 M

K
   αα

sb sd

−0.0001

−0.0002

−0.0005

−0.0010

−0.0020

−0.0050

−0.0100

0.000

0.001

0.005

0.010

● 0.050

Comparison of true values of α and asymptotic MK estimates for all simulation runs from Table S1. The
asymptotic MK estimates were obtained by fitting α(x) to an exponential function α(x) = a+b exp (−cx)
for all x ≥ 0.1, using a nonlinear least-squares algorithm and extrapolating to x = 1.
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