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Abstract 

Introduction 
Cancer genomes exhibit surprisingly weak signatures of negative selection1,2. This may 
be because tumors evolve either under very weak selective pressures (‘weak selection’) 
or under conditions that prevent the elimination of many deleterious passenger 
mutations (‘poor efficacy of selection’).  

Rationale 
The weak selection model argues that the majority of genes are only important for 
multicellular function. The poor efficacy of selection model argues, in contrast, that 
genome-wide linkage in cancer prevents many deleterious mutations from being 
removed via Hill-Robertson interference3. Since these linkage effects weaken as 
mutation rates decrease, we predict that cancers with lower mutational burdens should 
exhibit stronger signals of negative selection. Furthermore, because linkage affects 
driver mutations as well, low mutational burden cancers should also show stronger 
evidence of positive selection in driver genes. Neither pattern — in drivers or 
passengers — is expected under the weak selection model. We leverage the 10,000-
fold variation in mutational burden across cancer subtypes to stratify tumors by their 
genome-wide mutational burden and used a normalized ratio of nonsynonymous to 
synonymous substitutions (dN/dS) to quantify the extent that selection varies with 
mutation rate.  

Results 
We find that appreciable negative selection (dN/dS ~ 0.4) is present in tumors with a low 
mutational burden, while the remaining cancers (96%) exhibit dN/dS ratios approaching 
1, suggesting that the majority of tumors do not remove deleterious passengers. A 
parallel pattern is seen in drivers, where positive selection attenuates as the mutational 
burden of cancers increases. Both trends persist across tumor-types, are not exclusive 
to essential or housekeeping genes, and are present in clonal and subclonal mutations. 
Two additional orthogonal lines of evidence support the weak efficacy model: 
passengers are less damaging in low mutational burden cancers, and patterns of 
attenuated selection also emerge in Copy Number Alterations. Finally, we find that an 
evolutionary model incorporating Hill-Robertson interference can reproduce both 
patterns of attenuated selection in drivers and passengers if the average fitness cost of 
passengers is 1.0% and the average fitness benefit of drivers is 19%.  

Conclusion 
Collectively, our findings suggest that the lack of signals of negative selection in most 
tumors is not due to relaxed selective pressures, but rather the inability of selection to 
remove individual deleterious mutations in the presence of genome-wide linkage. As a 
result, despite the weak individual fitness effects of passengers, most cancers harbor a 
large mutational load (median ~40% total fitness cost) and succeed due to acquisition of 
additional strong drivers (~5 with an overall benefit of ~130%). Understanding how this 
deleterious load is overcome may help identify cancer vulnerabilities that may be 
targeted by new and existing therapies.  
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Introduction 

 Tumor progression is an evolutionary process acting on somatic cells within the 
body. These cells acquire mutations over time that can alter cellular fitness by either 
increasing or decreasing the rates of cell division and/or cell death. Mutations which 
increase cellular fitness (drivers) are observed in cancer genomes more frequently 
because natural selection enriches their prevalence within the tumor population. 
Conversely, mutations that decrease cellular fitness (deleterious passengers) are 
expected to be observed less frequently. This enrichment or depletion is often 
measured by comparing the expected number of nonsynonymous mutations (dN) within 
a region of the genome to the expected number of synonymous mutations (dS), which 
are presumed to be neutral. This ratio, dN/dS, is expected to be below 1 when the 
majority of nonsynonymous mutations are deleterious and removed by natural selection, 
be approximately 1 when all nonsynonymous mutations are neutral, and can be greater 
than 1 when a substantial proportion of nonsynonymous mutations are advantageous.  

 Two recent analyses of dN/dS patterns in cancer genomes found that for most 
non-driver genes dN/dS is ~1 and that only 0.1-0.4% of genes exhibit detectable 
negative selection (dN/dS < 1)1,2.This differs substantially from patterns in germ-line 
evolution (dN/dS ~ 0.4) where most genes show signatures of negative selection1. Two 
explanations for this difference have been posited. First, the vast majority of 
nonsynonymous mutations may not be deleterious in somatic cellular evolution despite 
their deleterious effects on the organism. While most genes may be critical for proper 
organismal development and multicellular functioning, they may not be essential for 
clonal tumor growth. In this hypothesis, negative selection (dN/dS < 1) should be 
observed only within essential genes and absent elsewhere (dN/dS ~ 1).  

 A second hypothesis is that fundamental differences in asexual somatic tumor 
evolution  reduce signatures of selection relative to sexually-recombining germ-line 
evolution. Specifically, interference between mutations due to genome-wide linkage, 
known as-Hill-Robertson interference, reduces the efficacy of natural selection3. Indeed, 
without recombination to link and unlink combinations of mutations, natural selection 
must act on entire genomes — not individual mutations — and select for clones with 
combinations of mutations of better aggregate fitness. Thus, advantageous drivers may 
not fix in the population, if they arise on an unfit background, and conversely, 
deleterious passengers can fix, if they arise on particularly fit backgrounds.   

 The inability of asexuals to eliminate deleterious passengers is driven by two Hill-
Robertson interference processes: hitchhiking and Muller’s ratchet (Fig. 1A). Hitchhiking 
occurs when a strong driver arises within a clone already harboring several passengers. 
Because these passengers cannot be unlinked from the driver under selection, they are 
carried with the driver to a greater frequency in the population. Muller’s ratchet is a 
process where deleterious mutations continually accrue within different clones in the 
population until natural selection is overwhelmed. Whenever the fittest clone in an 
asexual population is lost through genetic drift, the maximum fitness of the population 
declines to the next most fit clone (Fig. 1A). The rate of hitchhiking and Muller’s ratchet 
both increase with the genome-wide mutation rate4,5. Therefore, the second hypothesis 
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predicts selection against deleterious passengers should be more efficient and more 
evident (dN/dS < 1) in tumors with lower mutational burdens.  

 Here, we leverage the 10,000-fold variation in tumor mutational burden across 50 
cancer types to quantify the extent that selection attenuates, and thus becomes more 
inefficient, as the mutational burden increases. Using dN/dS, we find that selection 
against deleterious passengers and in favor of advantageous drivers is more efficient in 
low mutational burden cancers. Furthermore, low mutational burden cancers exhibit 
efficient selection across cancer subtypes, as well as within subclonal mutations, 
homozygous mutations, somatic copy-number alterations, and essential genes. Finally, 
we demonstrate that a simple evolutionary model incorporating Hill-Robertson 
interference can explain these observed patterns of selection. This model predicts that 
most cancers carry a substantial deleterious burden (~40%) that necessitates the 
acquisition of multiple strong drivers (~5) in successful tumors that together provide a 
benefit of ~130%. Collectively, these results explain why signatures of selection are 
largely absent in cancers with elevated mutational burdens and indicate that the vast 
majority of tumors harbor a large mutational load. 
 
 

 
 
Figure 1. Two Hill-Robertson interference processes can lead to an accumulation 
of deleterious mutations at high mutation rates. (A) Genetic hitchhiking. Each 
number identifies a different segment of a clone genome within a tumor. De novo 
beneficial driver mutations that arise in a clone can drive other mutations (passengers) 
in the clone to high frequencies (black dotted column). If the passenger is deleterious, 
both beneficial drivers and deleterious passengers can accumulate. (B) Muller’s 
ratchet. As the mutation rate within a tumor increases, deleterious passengers 
accumulate on more clones. If the fittest clone within the tumor is lost through genetic 
drift (black dotted row), the overall fitness of the population will decline. 
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Results 

A nonparametric null model of mutagenesis in cancer. Mutational processes in 
cancers are heterogeneous, which can bias dN/dS estimates of selective pressures. To 
overcome this issue, it is essential to design a bias-corrected version of dN/dS in which 
observed counts are compared to what is expected under neutral evolution. It is also 
important to consider that mutational biases are often specific to cancer type and 
genomic region. Such corrections are generally accomplished using parametric 
mutation models, which can become very complex in cancer and may posit many free 
parameters (>5,000)1,6. 

 To circumvent these issues, we use a permutation-based, nonparametric 
(parameter-free) estimation of dN/dS. In this approach, every observed mutation is 
permuted while preserving the gene, patient samples, specific base change (e.g. A>T) 
and tri-nucleotide context. The permutations are then tallied for both nonsynonymous 
dN(permuted) and synonymous dS(permuted) substitutions (Fig. S1) and used as proportional 
estimates of the observed number of nonsynonymous dN(observed) (or simply dN) and 
synonymous dS(observed) (dS) mutations in the absence of selection. The unbiased effects 
of selection on a gene, dN/dS, is then:  

𝑑𝑁
𝑑𝑆 =

𝑑𝑁(observed) 𝑑𝑁(permuted)⁄
𝑑𝑆(observed) 𝑑𝑆(permuted)⁄  

For all cancer types and patient samples, P-values and confidence intervals are 
determined by bootstrapping patient samples. Note that this permutation procedure will 
account for all gene and tumor-level mutational biases (e.g. neighboring bases7, 
transcription-coupled repair, S phase timing8, mutator phenotypes) and their covariation. 
We confirmed that this approach accurately measures selection even in the presence of 
simulated mutational biases (Methods, Fig. S2) and demonstrate that this approach 
identifies similar patterns of selection as parametric models (Fig. S3).    

Attenuation of selection in drivers and passengers for elevated mutational burden 
tumors. We estimated dN/dS patterns in both driver and passenger gene sets across 
11,855 tumors from TCGA (whole-exome) and ICGC (whole-genome) aggregated over 
50 cancer types (Methods). We used the following four mutational tallies as a proxy for 
the genome-wide mutation rate: (1) the total number of mutations or tumor mutational 
burden (TMB) (2) the total number of observed substitutions in both synonymous and 
nonsynonymous sites (dN + dS) (Fig. 1), and (3) the total number of mutations in 
intergenic, and (4) intronic regions. All estimates are strongly correlated (R2 > 0.97, Fig. 
S4). 

 In principle, only the last two tallies — the number of substitutions in intergenic or 
intronic regions — are orthogonal to dN/dS, and least likely to be biased by selection. 
However, these measures can only be used on whole-genome data, which represents 
15% of samples in our datasets. Therefore, for most of the analyses, we used the 
second measure (dN + dS) to define mutational burden, while being cognizant that the 
analysis could be complicated by the fact that the same mutation tallies are used for 
both the x-axis (dN + dS) and y-axis (dN/dS). We note that this interdependence leads to 
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a slight underestimation of the degree of purifying selection, rendering our analysis 
conservative (Fig. S5, Methods).  

 Consistent with the ‘poor efficacy of selection’ model, whereby selection fails to 
eliminate deleterious mutations in high mutational burden tumors, we observe pervasive 
selection against passengers exclusively in cancers with low mutational burdens (dN/dS 
~ 0.4 in tumors with mutational burden ≤ 3, while dN/dS ~ 0.9 in tumors with mutational 
burden > 10, Fig. 2A). We observed little negative selection in passengers when 
aggregating tumors across all mutational burdens (dN/dS = 0.88), which is broadly 
similar to previous estimates1,2,6,9. Also consistent with the ‘poor efficacy of selection’ 
model, drivers exhibit a similar but opposing trend of attenuated selection at elevated 
mutational burdens (dN/dS ~ 3.5 when mutational burden ≤ 3 and gradually declines to 
~1.38 when mutational burden > 100). This pattern is not specific to oncogenes or 
tumor suppressors (Fig. S6). While the attenuation of selection against passengers in 
higher mutational burden tumors is a novel discovery, this pattern among drivers has 
been reported previously1. We confirmed that these patterns were robust to the choices 
that we made in our analysis pipeline, including: (1) the somatic mutation calling 
algorithm (Mutect2 and MC3 SNP calls10, Fig. S7),  (2) the dataset (TCGA11, ICGC12, 
and COSMIC13, Fig. S3), (3) the choice of driver gene set (Bailey et al,14, IntOGen15, 
and COSMIC13, Fig.S8), (4) mutational burden metric, and (5) the null model of 
mutagenesis (dNdScv)1, (Fig. S3). 

 If negative selection is more pronounced in low mutational burden tumors, then 
the nonsynonymous mutations observed should also be less functionally consequential. 
By annotating the functional effect of all missense mutations using PolyPhen216 (Fig 
2B), we indeed found that observed nonsynonymous passengers are less damaging in 
low mutational burden cancers. Similarly, driver mutations are less functionally 
consequential as mutational burden increases, as expected for mutations experiencing 
weaker positive selection (Fig 2B). Together these two trends provide additional and 
orthogonal evidence that selective forces on nonsynonymous mutations are more 
efficacious in low mutational burden cancers.   

 Finally, since all mutational types experience Hill-Robertson interference, 
attenuated selection should also persist in Copy Number Alterations (CNAs). Since 
CNAs cannot be partitioned into synonymous and nonsynonymous events, but can still 
disrupt protein function and dosage, we quantified selection in CNAs using two 
alternative measures: Breakpoint Frequency17 and Fractional Overlap18. For both 
measures, we compare the number of CNAs that either terminate (Breakpoint 
Frequency) within or partially overlap (Fractional Overlap) Exonic regions of the genome 
relative to non-coding (Intergenic and Intronic) regions (dE/dI, See Methods). Like 
dN/dS, dE/dI is expected to be <1 in genomic regions experiencing negative selection, 
>1 in regions experiencing positive selection (e.g. driver genes), and approximately 1 
when selection is absent or inefficient. Using dE/dI, we observed attenuation of 
selection in both driver and passenger CNAs as the total number of CNAs increases 
using both Fractional Overlap (Fig. 2C) and Breakpoint Frequency (Fig. S9). While 
CNAs of all lengths experience attenuated selection, CNAs longer than the average 
gene length (>100 KB) experience greater selective pressures in drivers (p < 10-4).  
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Figure 2. Signatures of positive and negative selection attenuate at high mutation 
rates. (A) dN/dS of passenger (red) and driver (green) gene sets within 11,855 tumors 
(ICGC and TCGA) stratified by total number of substitutions present in the tumor 
(dN(observed) + dS(observed)). dN/dS of 1 (solid black line) is expected under neutrality. 
Dashed gray line denotes pan-cancer genome-wide dN/dS. (B) Fraction of pathogenic 
missense mutations, annotated by PolyPhen2, in the same driver and passenger gene 
sets also stratified by total number of substitutions. Black line denotes the fraction of 
pathogenic missense mutations in the entire human proteome. (C) Fractional overlap of 
CNAs that reside within exonic (dE) to intergenic (dI) regions within putative driver and 
passenger gene sets (identified by GISTIC 2.0, Methods) in tumors stratified by the total 
number of CNAs present in each tumor and separated by CNA length. Solid black line 
of 1 denotes values expected under neutrality. (D) dN/dS of clonal (VAF > 0.2) and 
subclonal (VAF < 0.2) passenger and driver gene sets in tumors stratified by the total 
number of substitutions. Darker colors denote clonal passengers and drivers, while 
lighter colors denote subclonal passengers and drivers. dN/dS of 1 (solid black line) is 
expected under neutrality. (E)  Driver and passenger dN/dS of the highest and lowest 
defined mutational burden bin in broad anatomical sub-categories. (F) Same as (E), 
except for specific cancer subtypes with ≥500 samples. All shaded error bars are 95% 
confidence intervals determined by bootstrap sampling. 
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Strong selection in low mutational burden tumors cannot be explained by 
mutational timing, gene function, or tumor type. We next tested alternative 
hypotheses to the ‘poor efficacy of selection’ model for the observed pattern of 
attenuated selection in higher mutational burden tumors. We considered the possibility 
that selection is strong only during normal tissue development but absent after cells 
have transformed to malignancy. This would disproportionately affect low mutational 
burden tumors, as a greater proportion of mutations in them will be generated prior to 
tumor transformation. If true, then attenuated selection should be absent in sub-clonal 
mutations, which must arise during tumor growth. However, we do detect clear 
attenuation of selection for the subset of likely subclonal mutations with Variant Allele 
Frequency (VAF) below 20% (Fig. 2D & S10). Attenuated selection in drivers and 
passengers is detected in both sub-clonal and clonal mutations, but is weaker in both 
drivers and passengers with lower VAFs. Weaker efficiency of selection among less 
frequent polymorphisms is expected under a range of population genetic models19 and 
especially so in rapidly-expanding, spatially-constrained cancers20. Here, it can also be 
partially due to the fact that heterozygous mutations are only partially-dominant21 and 
will necessarily exhibit lower VAFs.  

 Next, we considered and rejected the possibility that attenuated selection is 
limited to particular types of genes. We first annotated our observed mutations by 
different functional categories and Gene Ontology (GO) terms22 and found that negative 
selection is not specific to any particular gene functional category, and specifically not 
limited to essential or housekeeping genes — a key prediction of the ‘weak selection’ 
model1 (Fig. S11, p < 0.05, Wilcoxon signed-rank test).  

 Finally, we found that these patterns of attenuated selection persist across 
cancer subtypes for both SNVs and CNAs. We calculated dN/dS in tumors grouped by 
nine broad anatomical sub-categories (e.g. neuronal) and 50 subtype classifications 
23(Fig 2E-F). We find that patterns of attenuated selection in SNVs persists in the broad 
and specific (drivers p = 1.3 × 10-5, passengers p = 1.2 × 10-2; Fig. S12) classification 
schemes. Furthermore, dE/dI measurements of CNAs exhibit these same patterns of 
selection in broad (Fig S13) and specific subtypes (Fig. 2F; drivers p < 10-6 and 
passengers p = 7.3 × 10-4). Collectively, these results strongly support the ‘poor efficacy 
of selection’ model and argue that the observed patterns must be due to forces that are 
universal for tumor evolution.  

Estimate of the fitness effects of drivers and passengers, and Hill-Robertson 
interference processes using an evolutionary model. Our findings indicate that 
selection consistently attenuates in both drivers and passengers across all cancers as 
mutational burden increases. To determine whether Hill-Robertson interference alone 
can explain these findings, we modeled tumor progression as a simple evolutionary 
process with advantageous drivers and deleterious passengers. We then used 
Approximate Bayesian Computation (ABC) to compare these simulations to observed 
data and infer the mean fitness effects of drivers and passengers. 

Our evolutionary simulations model a well-mixed population of tumor cells that 
can stochastically acquire advantageous drivers and deleterious passengers during cell 
division24. The multiplicative sum of the individual fitness effects of these mutations 
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determines the relative birth and death rate of each cell, which in turn dictates the 
population size N of the tumor. If the population size of a tumor progresses to 
malignancy (N > 1,000,000) within a human lifetime (≤100 years), the accrued 
mutations, as well as the patient age are recorded. Each simulated tumor is assigned a 
randomly-sampled mutation rate from a broad range (10-12 to 10-7  mutations • 
nucleotide-1 • generation-1, Methods).  

Figure 3A illustrates the ABC procedure. To compare our model to observed 
data, we simulated an exponential distribution of fitness effects with mean fitness values 
that spanned a broad range (10-2 - 100 for driver and 10-4 - 10-2 for passengers, 
Methods). We summarized observed and simulated data using statistics that capture 
three relationships: (i) the dependence of driver and passenger dN/dS rates with 
mutational burden, (ii) the rate of cancer age-incidence (SEERs database25), and (iii) 
the distribution of mutational burdens (summary statistics of (ii) and (iii) were based on 
theoretical parametric models26, Methods, Fig. S14 & S15). We then inferred the 
posterior probability distribution of mean driver fitness benefit and mean passenger 
fitness cost using a rejection algorithm that we validated using leave-one-out Cross 
Validation (Methods, Fig. S16). Using this approach, the Maximum Likelihood Estimate 
(MLE) of mean driver fitness benefit is 18.8% (Fig. 3B), while the MLE of passenger 
mean fitness cost is 0.96% (Fig. 3C). Simulations with these MLE values agree well with 
all observed data (Fig. 3D-F, Pearson’s R = 0.95, 0.80, 0.99, 0.97 for driver dN/dS, 
passenger dN/dS, Age-Incidence, and Mutational Burden respectively).  

While Hill-Robertson interference alone explains dN/dS rates in the passengers 
well, the simulations most consistent with observed data exhibited consistently higher 
elevated dN/dS rates in drivers (Fig. 3D). We tested whether positive selection on 
synonymous mutations within driver genes could explain this discrepancy. Indeed, we 
find that a model incorporating synonymous drivers agrees modestly better with 
observed statistics (p = 0.043, ABC posterior probability). The best-fitting model predicts 
that ~10% of synonymous mutations within driver genes experience positive selection, 
which is consistent with previous estimates for human oncogenes27 (Methods, Fig. 3D, 
S17). Furthermore, we observe additional evidence of selection and codon bias in 
synonymous drivers exclusive to low mutational burdens (TCGA samples, Methods, Fig. 
S17). Lastly, we considered and rejected the possibility that the attenuation of selection 
in drivers could be due to a diminishing benefit of additional drivers (akin to a 5-hit 
multistage model26, Methods, p > 0.5, ABC posterior probability).  

 Our results indicate that rapid adaptation through natural selection – acting on 
entire genomes, rather than individual mutations – is pervasive in all tumors, including 
those with elevated mutational burdens. Given the quantity of drivers and passengers 
observed in a typical cancer (TCGA), we estimate that cancer cells are in total ~90% 
fitter than normal tissues (130% benefit of drivers, 40% cost of passengers). This is 
roughly consistent with the difference in division times between normal (primary) cells 
and cancer cell lines28. A median of five drivers accumulate per tumor in these 
simulations – also consistent with estimates from age-incidence curves and known 
hallmarks of cancer29. Lastly, the mutation rates of tumors that progress to cancer in our 
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model also recapitulate observed mutation rates in human cancer30 (median 3.7 x 10-9, 
95% Interval 1.1  x 10-10 - 8.2   x 10-8, Fig. S18).  
 
 Most notably, aggregate passenger load confers a fitness cost of ~40%. While 
this collective burden is large, the individual fitness effects of accumulated passengers 
in these simulations (mean 0.8%) are similar to observed fitness changes in cancer cell 
lines (1 - 3%)31. These passengers accumulated primarily via Muller’s Ratchet, while 
only ~14% accumulated via hitchhiking (inferred using population genetics theory24 and 
MLE fitness effects, Methods, Fig. S19).  

 

Figure 3. ABC procedure estimates the strength of selection in passengers and 
drivers. (A) Schematic overview of the ABC procedure used. A model of tumor 
evolution with Hill-Robertson interference contains two parameters — sd (mean fitness 
benefit of drivers) and sp (mean fitness cost of passengers) — sampled over broad prior 
distributions of values. Simulations begin with an initiating driver event that establishes 
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the initial population size of the tumor. The birth rate of each individual cell within the 
tumor is determined by the total accumulated fitness effects of drivers and passengers. 
If the final population size of the tumor exceeds one million cells within a human lifetime 
(100 years), patient age and accrued mutations are recorded. Summary statistics of four 
relationships are used to compare simulations to observed data: (i) dN/dS rates of 
drivers and (ii) passengers across mutational burden, (iii) rates of cancer incidence 
versus age, and (iv) the distribution of mutational burdens. A rejection algorithm is used 
to either reject or accept simulations. (B-C) Inferred posterior probability distributions of 
sd and sp. The Maximum Likelihood Estimate (MLE) of sd is 18.8% (green, 95% CI [13.3, 
32.7]), and the MLE of sp is 0.96% (green, 95% CI [0.28, 3.6%]). (D-F) Comparison of 
best-fitting simulations (MLE parameters, dashed lines) to observed data (solid lines). 
(D) dN/dS rates of passengers (red) and drivers (light green) for simulated and 
observed data versus mutational burden. A model where 10% of synonymous mutations 
within drivers experience positive selection (dark green) was also considered. (E) 
Cancer incidence rates for patients above 20 years of age. (F) Comparison of the 
distribution of the mutational burdens of tumors. 

 

Discussion 
  
 Here we argue that signals of selection are largely absent in cancer because of 
the poor efficacy of selection and not because of weakened selective pressures. In low 
mutational burden tumors (≤ 3 total substitutions per tumor), increased selection for 
drivers and against passengers is observed and ubiquitous: in SNVs and CNAs; in 
heterozygous, homozygous, clonal, and subclonal mutations; and in mutations 
predicted to be functionally consequential. These trends are not specific to essential or 
housekeeping genes. Importantly, these patterns persist across broad and specific 
tumor subtypes. Collectively, these results suggest that inefficient selection is generic to 
tumor evolution. 

Importantly, these patterns of selection are missed when dN/dS rates are not 
stratified by mutational burden. Since a small minority of tumors (4% in TCGA and 
ICGC) have a low mutational burden, accounting for 0.1% of mutations in these 
databases, the dN/dS of passengers at low mutational burdens (~0.4) do not 
appreciably alter the pan-cancer dN/dS of passengers (0.88 in our study, 0.82 — 0.98 in 
1,2,6,9). Thus, these patterns can only be detected now given the vast amounts of 
available cancer sequencing data. Furthermore, we believe that low mutational burden 
tumors should be particularly valuable for identifying genes and pathways under positive 
and negative selection.  

We show that a simple evolutionary model that incorporates Hill-Robertson 
Interference can explain this ubiquitous trend of attenuated selection in both drivers and 
passengers. dN/dS rates attenuate in drivers because the background fitness of a clone 
becomes more important than the fitness effects of an additional driver at elevated 
mutation rates. Furthermore, these simulations indicate that, despite dN/dS patterns 
approaching 1 in tumors with elevated mutational burdens, passengers are not 
effectively neutral (Ns > 1). Instead, passengers confer an individually-weak, but 
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collectively-substantial fitness cost of ~40% that impacts tumor progression. While this 
simple model does not explicitly incorporate many known aspects of tumor biology 
(Table S2), we note that previous studies demonstrate that spatial constraints further 
reduce the efficacy of selection in cancer20. 

The functional explanation for why passengers in cancer are deleterious is 
unknown. In germ-line evolution, mutations are primarily deleterious because of protein 
misfolding32. Deleterious passengers in somatic cells should confer similar effects33, but 
may carry additional costs (e.g. immunoediting34). Furthermore, we do not yet 
understand how tumors overcome the functional effects of deleterious passengers. 
Potential mechanisms may include (1) silencing of non-essential proteins that carry 
deleterious passengers35, (2) upregulation of heat shock and proteolytic pathways36, (3) 
abdication of cellular functions (e.g. oxidative phosphorylation), (4) polyploidization21, 
and (4) immune escape34. Understanding and identifying how tumors manage this 
deleterious burden ought to identify new cancer vulnerabilities that may allow 
researchers to develop new therapies and better target existing ones. 
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Methods & Supplementary Materials 
 
Mutation calling and quality controls. Mutations were downloaded from online repositories that have already 
invested heavily in quality control. Multiple data repositories were used to ensure reproducibility. Post-processing 
was minimal to avoid engendering a particular result, and only excluded sequencing samples obtained from cell 
lines, or studies that did not report synonymous variants, or (on occasion) mutations within pseudogenes. These 
exclusions are described in greater detail below.  

Somatic Nucleotide Variants (SNVs). Exomic, open-access SNV calls (WES) of 10,486 cancer patients in (The Cancer 
Genome Atlas) TCGA were downloaded from the Multi-Center Mutation Calling in Multiple Cancers (MC3) project1. 
This repository uses a consensus of seven mutation-calling algorithms. Whole-Genome Sequencing SNV calls 
(WGS) of 1,830 patients were downloaded from the ICGC data portal in November 20182. Only consensus mutation 
calls from the PCAWG Consensus SNV-MNV caller were considered. Both missense and nonsense mutations are 
defined as nonsynonymous mutations. Frameshift, indels, and splice-site variants were not included in analyses. 
Samples without any synonymous or nonsynonymous mutations and unexpressed genes in either dataset were 
excluded. Note that there is no evidence of germline contamination by common SNPs (MAF >5%) from 1,000 
Genomes Project3 (v 2015 Aug) using ANNOVAR4 to annotate mutations in either datasets (Supplementary Figure 
7). A final of 1,703 whole-genome and 10,152 whole-exome sequencing samples were used for the analyses in this 
paper.  

For supplemental analyses on the effect of variant callers, SNVs from exome and whole genome wide 
screens were downloaded on October 2016 from the Catalog of Somatic Mutations in Cancer’s (COSMIC) Mutant 
Export Census5. Studies before 2010 that didn’t report silent mutations, and cell lines were removed from the 
analysis. Whole-exome SNVs in TCGA were also called using Mutect26 (Supplementary Figure 3).  

Defining tumor burden. We tested four different mutation burden metrics as a proxy for the genome-wide 
mutation rate: (1) the total number of observed mutations, (2) total number of substitutions in both synonymous 
and nonsynonymous sites (dN

(observed) + dS
(observed)), (3) the total number of mutations in intergenic, and (4) intronic 

regions. Although only the last two definitions of mutational burden are completely independent to dN/dS, the 
vast majority of samples (10,152 vs 1,703) are derived from whole-exome data. We note that all mutation rates 
are strongly correlated to each other (R2  > 0.97). Because only dN + dS could be applied to WES data — the 
majority of samples — and all metrics worked equally-well, we primarily used dN + dS to measure mutational 
burden. Lastly, because dN/dS is undefined for tumors with no synonymous mutations, we necessarily excluded 
these samples. We also excluded samples with no nonsynonymous mutations so as to apply a symmetric filter on 
the data and because data quality may be compromised in these samples.  

A Nonparametric Null Model of Mutagenesis to calculate dN/dS. We assume that for any particular tumor, 
mutation rates are constant across a gene for a particular tri-nucleotide context and base change (e.g. C > G). Our 
procedure is inspired by Constrained Marginal Models (or ‘edge switching’ in network analysis), whereby the 
marginal distributions of observations aggregated over known confounding variables are preserved under 
permutation to create a null distribution. In our application of this strategy, the marginal distributions of mutations 
(across tri-nucleotide context, base change, gene, and tumor) remain preserved – as they would be in a 
Constrained Marginal Model; however, we exhaustively consider every acceptable permutation of the data. 
Because our approach is highly-constrained, these permutations are exhaustively computable (median 61 
alternatives per mutation). Thus, resampling is unnecessary.  

Our null model presumes that all mutations of type i, defined by a tri-nucleotide context and base change, 
arise with probability Migt within each gene g and tumor t. For each gene, we tally the total quantity of 
nonsynonymous mutations Nig and synonymous mutations Sig. Suppose selection enriches or depletes 
nonsynonymous mutations within a gene and tumor by a rate wgt. The expected number of nonsynonymous and 
synonymous mutations within a particular tumor and gene are simply E[𝑑(] = 𝜔+, ∑ 𝑀/+,𝑁/+/  and E[𝑑0] =
∑ 𝑀/+,𝑆/+/  in the absence of selective pressures on synonymous mutations. As with the main text, dN and dN

(observed) 
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are used interchangeably. Although Migt is unknown, dN/dS statistics attempt to infer selection nonetheless by 
noting that: 

𝐸[𝑑(]
𝐸[𝑑0]

=
𝜔+, ∑ 𝑀/+,𝑁/+/

∑ 𝑀/+,𝑆/+/
= 𝜔+,

< 𝑀/+,, 	𝑁/+, >
< 𝑀/+,, 𝑆/+, >

= 𝜔+,
𝜌7(8𝑀+,88𝑁+,8
𝜌708𝑀+,88𝑆+,8

= 𝜔+,
𝜌7(8𝑁+,8
𝜌708𝑆+,8

 

Note that 𝜌9: =< 𝐴,𝐵 >/(‖𝐴‖‖𝐵‖) where ‖𝐴‖ = √< 𝐴,𝐴 > is the Pearson product-moment correlation 
coefficient.  When r MN » r MS, 

𝐸[𝑑(]/‖𝑁‖/
𝐸[𝑑0]/‖𝑆‖/

≈ 𝜔+,  

I.e. dN/dS is approximately equal to the selective pressures on nonsynonymous mutations when the accessible 
nonsynonymous and synonymous loci are properly accounted and when the correlation between mutational 
processes and nonsynonymous loci are roughly equivalent to the correlation between mutational processes and 
synonymous loci. Traditionally, this assumption was used to calculated dN/dS. To improve resolution of dN/dS, 
researchers have attempted to account for these correlations using sophisticated parametric models of Migt. An 
alternative statistical approach, however, is to treat these correlations as nuisance parameters.  

 Constrained Marginal Models permute observed data in all possible manners that preserve the underlying 
covariance structure of the data (e.g. r MN, r MS). In our particular case of this method, we note that by definition, 
𝑑(
CDEFG,DH = ∑ (𝑑(IJKDELDH/𝑁/ +/ 𝑑0IJKDELDH/𝑁/). Thus:  

𝐸[𝑑(
CDEFG,DH]

𝐸[𝑑0
CDEFG,DH]

=
∑ N𝜔+,𝑀/+,𝑁/+,O +𝑀/+,𝑁/+,𝑆/+,P/

∑ N𝜔+,𝑀/+,𝑁/+,𝑆/+, + 𝑀/+,𝑆/+,O P/
=
𝜔+,𝜌7(8𝑀+,88𝑁+,8

O + 𝜌7(8𝑀+,88𝑁+,88𝑆+,8

𝜔+,𝜌708𝑀+,88𝑆+,88𝑁+,8 + 𝜌708𝑀+,88𝑆+,8
O =

𝜌7(8𝑁+,8
𝜌708𝑆+,8

 

Hence, by dividing the observed mutations by all permutations, we eliminate the covariance of mutational 
processes with available loci and, thus, measure wgt directly for any particular gene-tumor combination without 
mutational bias.  

Unfortunately, because of the log-sum Inequality, mutational bias can arise once cohorts of genes and 
cohorts of tumor samples are binned. This problem is common to all dN/dS measures and is a consequence of the 
correlation of mutational biases with selection (i.e.	< 𝑀/+,,𝜔+, >) – not the correlation of mutational biases with 
one another, as these covariances are already accounted-for in a Constrained Marginal Model. For example, if tri-
nucleotide biases covary linearly with gene-level biases, and are independent of tumor-level biases, then a 
parametric estimate of Migt may deconstruct Migt into 𝑀/+, = 𝑓N𝑖, 𝑔, 𝑡, 𝜌/+P, where 𝜌/+ is the covariation of tri-
nucleotide mutational biases with gene-level biases. Nonetheless, < 𝑀/+,,𝜔+, >	∝	< 𝜌/+,𝜔+, > will still be 
ignored. Indeed, this covariation of mutational processes with selective forces is the raison d'etre of the current 
study: because of Hill-Robertson Interference, selection is correlated with genome-wide mutation rate (i.e. 
∑ 𝑀/+,𝜔+, ≠ 0, ). Hence, the level at which observed dN values dS are binned necessarily ignores covariation 
between mutational processes and selection (in addition to any variation of wgt within the cohort (e.g. balanced 
positive and negative selection that might also be misinterpreted as neutral evolution). 

To confirm that our null model can accurately estimate dN/dS even in the presence of extreme mutational 
biases, we simulated artificial data where different COSMIC signatures5 (SBS Signatures 1-9, v3) contribute to all of 
the mutations. Permuted dN and dS tallies for each mutational context were simulated by randomly sampling 1,000 
genes with the same mutational context. The fraction of permuted dN and dS tallies for each mutational context 
was used as weighted probabilities to derive observed dN and dS tallies. To simulate negative selection, dN counts 
were randomly removed from each context at a rate 1 - wgt (e.g. a Simulated or ‘true’ dN/dS of 0.8 in a cohort of 
samples indicates a 20% chance of non-synonymous mutations being removed in the samples). These simulated 
(true) rates were then compared to observed and permuted dN and dS tallies according to the dN/dS metric that 
we used throughout this study: 
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𝑑𝑁
𝑑𝑆 =

𝑑(
(observed) 𝑑(

(permuted)c
𝑑0
(observed) 𝑑0

(permuted)c
 

Lastly, we note that binning nonsynonymous and synonymous mutations at the genome-wide level (e.g. 
drivers and passengers) provided the most robust estimates of dN/dS when bootstrapping observed tumor 
samples. Without binning at this level, statistical power is insufficient. Bootstrapping also demonstrated that log-
transformed dN/dS values were more robust than untransformed values and thus were generally used in this 
study. 

A Parametric Null Model of Mutagenesis. For comparison, we also calculated dN/dS using dNdScv7 – a previously-
published parametric null model of mutagenesis in cancer8. To compare both methods, dNdScv was ran globally 
and separately on samples stratified by the total number of substitutions using the following parameters:  

 max_coding_muts_per_sample = Inf 
 max_muts_per_gene_per_sample = Inf 

Global dN/dS values of all non-synonymous mutations (wall) reported by dNdScv were used. This model reproduced 
observed dN/dS trends (Supplemental Figure 3) and was used to infer patterns of selection in synonymous 
mutations (Supplemental Figure 17).  

Orthogonality of dN/dS with Mutational Burden and effects of excluding samples with no synonymous 
mutations. Mutational burden is generally calculated as the total number of substitutions within a sample (i.e. dN + 
dS), however these tallies are also used in our measurement of dN/dS. Hence, any interdependence of mutational 
burden with dN/dS could bias our understanding of the relationship between selection and genome-wide mutation 
rate. We consider the interdependence of these two measures by assuming that both dN and dS are Poisson-
distributed with rate parameters λN and λS. The joint probability mass density of any combination of these two 
quantities is then: 

𝑓(𝑑(, 𝑑0) =
𝜆0
HefHg𝑟He𝑒jkg(Efl)	
𝑑(!𝑑0! (1 − 𝑒jkg)

 

Here, r = λN / λS. The expectation value of dN/dS, for any degree of selection versus any combination of 
nonsynonymous and synonymous mutation tallies can then be calculated simply by exhaustively summing over all 
combinations that arise with probability above machine precision. In Supplementary Figure 5, we compare the 
variation in dN/dS for a typical genome under neutral selection or equally-balanced positive and negative selection 
(r = 2.8) using the dN + dS and dS mutational burden metrics. We observe less deviation from expectation using dN + 
dS primarily because dS alone is a poor proxy for the mutation rate — i.e. there are far fewer synonymous 
mutations to use to estimate the mutation rate. dN + dS did exhibit slightly greater bias in observed dN/dS relative 
to expectation, however this bias was small compared to the variation in estimates (<5% for mutational burdens 
greater than 2) and biased observed estimates towards increased values of dN/dS, which will only understate the 
degree of negative selection. Lastly, we note that because the genome-wide dN/dS is approximately 1, deviations 
from these theoretical calculations should be minimal.  

We also tested the effects of this non-orthogonality of our approach in three additional ways. First, we 
investigating the correlation of mutational burden metrics mutation rate in our simulated tumors (see below) and 
found that dN + dS correlated most strongly with mutation rate (Supplemental Figure 5C). Next, we randomly-
partitioned all protein-coding mutations into two necessarily-orthogonal halves: a half that defined the mutational 
burden and a half that was used for calculating dN/dS and found that selection patterns persisted (Supplemental 
Figure 5B). Finally using the WGS data, we compared dN/dS to measures of mutational burden that excluded data 
from protein-coding regions (all intergenic and all intronic mutations), which once again represents a completely-
orthogonal measure (Supplemental Figure 3).  

Identification of driver genes in cancer. For all analysis using SNVs unless explicitly stated, a comprehensive list of 
299 pan-cancer driver genes were derived from 26 computational tools used to catalog driver genes9. Other pan-
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cancer driver gene sets tested were derived from COSMIC’s Driver Gene Census5 (downloaded on October 2016) 
and IntOGen’s Cancer Drivers Database10 (v2014.12) which contained 602 and 459 number of driver genes, 
respectively.   

Many driver genes are associated with only particular tumor subtypes. To compare patterns of selection 
across cancer subtypes without increasing or decreasing the size of the list for each subtype, we chose to use a 
single set of driver genes for most analyses. This may understate the degree of positive selection in driver genes as 
mutations in these genes may be passengers in some tumor subtypes. In Supplementary Figure 8, we investigate 
patterns of selection using the top 100 driver genes identified for each tumor type and observe decreased 
signatures of positive selection overall in driver genes. Nevertheless, the patterns of attenuated selection in drivers 
and passengers remains. While tissue-type specific driver genes certainly exist, our results suggest that our 
statistical power to detect drivers still remains too limited to justify subdividing analyses by tumor type in many 
cases.  

For all CNA analysis, GISTIC 2.011 was used to identify a set of genomic regions enriched for copy number 
gains and copy number losses using recommended settings with a confidence threshold of 0.9. CNAs used to 
identify these peaks were downloaded from the NIH Genomic Data Commons (GDC)12 in the TCGA cohort. For each 
amplification peak, the closest gene was annotated as a putative Oncogene, and similarly the closest gene to each 
deletion peak was annotated as a putative Tumor Suppressor. The top 100 amplification peaks (oncogenes) and 
deletion peaks (Tumor Suppressors) were classified as drivers for each of the 32 tumor types. 34% of identified 
driver genes appear in more than one tumor type, while 2.6% of identified driver genes appear in more than five 
tumor types.  

Annotation of clonal and subclonal mutations. Since TCGA contains SNVs with high coverage and available purity 
estimates, only MC3 SNVs (exclusive to TCGA) were used in this analysis (WGS read-depth is generally lower than 
WES read-depth). Variant allele frequencies (VAFs) were calculated per site as the number of mutant read counts 
divided by the total number of read counts. VAFs were adjusted for purity using calls made by ABSOLUTE12,13, 
collected from GDC. A VAF threshold of 0.2 was used to define ‘subclonal’ (< 0.2) vs ‘clonal’ (> 0.2) SNVs. Different 
VAF thresholds were considered (Supplemental Figure 10) and the choice of ‘clonal’ thresholding did not impact 
the conclusions of this study. 

Polyphen2 analysis. PolyPhen2 annotations in the MC3 SNP calls were used14. Only missense mutations that were 
categorized as either ‘benign’, ’probably damaging’ or ‘possibly damaging’ were used. Fraction of pathogenic 
missense mutations was calculated as the number of pathogenic mutations of all confidence levels divided by the 
total number of categorized mutations.   

Classification of genes by functional category. To test for patterns of selection in functionally related genes, we 
annotated all mutations by different functional categories and Gene Ontology (GO) terms15. Oncogenes and tumor 
suppressors were annotated from a curated set of 99 high confidence cancer genes16. Essential genes were 
collected from a genome-wide CRISPR screen that identified genes required for proliferation and survival in a 
human cancer cell line17. Housekeeping genes were defined as genes with an exon that is expressed in all tissues at 
any nonzero level, and exhibits a uniform expression level across tissues18. Interacting proteins were downloaded 
from the mentha database in April 201919. 

To identify highly expressed genes, median transcripts per million (TPM) in 54 tissue types (v7 release) 
were downloaded from the Genotype-Tissue Expression (GTEx) project20. Tissues that contained high expression in 
most genes, specifically testes, were removed. Only genes that had TPM counts above zero in any of the 53 
remaining tissues were used. TPM counts were averaged across all tissues. Highly expressed genes were defined as 
the top 1000 genes expressed across all tissues.  

To test for signals of negative selection in other functional groups, we annotated mutations by candidate 
GO  terms according to Biological Processes: Transcription Regulation (GO Term ID: 0140110), Translation 
Regulation (GO Term ID: 0045182), and Chromosome Segregation (GO Term ID: 0007059 ). 
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Somatic Copy Number Alteration (CNAs). All CNAs were downloaded from the COSMIC database on June 20155. 
Mitochondrial CNAs were discarded from analysis, as copy number changes are difficult to infer. Gene annotations 
and the locations of telomeres and centromeres were downloaded from the UCSC Genome Browser (hg19). 
Telomeric and centromeric regions (also defined by the UCSC Genome Browser) were masked from all 
measurements of dE/dI. Because the selection patterns of non-focal CNAs — alterations with at least one terminus 
in a telomere or centromeric region — were not noticeably different from long (>100kb) focal CNAs, these two 
alteration classes were aggregated for analysis. Because we observed positive selection for deletions (copy number 
losses) within oncogenes and amplifications (copy number gains) within Tumor Suppressors, we did not delineate 
between gains and losses, nor oncogenes and Tumor Suppressors, in reported analyses. CNAs that overlapped an 
oncogene or tumor suppressor in any region (for any fraction of the CNA) were classified as drivers. Mutational 
burden was defined simply as the total number of CNAs within a sample. Pan-cancer CNAs from cBioPortal (August 
2018) were also analyzed, however consistent purity and ploidy estimates could not be obtained by using either 
ABSOLUTE13 or TITAN21, so this data was not used for published analyses.  

Measurements of selection on CNAs. dE/dI was calculated using a ‘Breakpoint Frequency’ metric and a ‘Fractional 
Overlap’ metric. For both metrics, the dE/dI of a particular gene set i (e.g. driver or passenger genes) is defined by 
a genomic track Ti,g , which is one for every annotated region g of the track and zero elsewhere. Only non-
centromeric and non-telomeric regions are considered in the mappable human genome G. Each CNA Cg,m is 
defined by its position on the genome g and the mutational burden m of the tumor harboring the mutation. For 
‘Breakpoint Frequency’ Cm,i is one at the position of both termini of the CNA and zero elsewhere. For ‘Fractional 
Overlap’ Cm,i is 1/L, where L is the length of the CNA,  for every region of the genome spanned by the CNA and 
zero elsewhere. For a particular range of mutational burdens M, dE/dI was defined as: 

𝑑𝐸
𝑑𝐼 /,7

=
∑ ∑ 	𝑇/,+	𝐶F,+s

+
7
F

∑ 𝑇/,+s
+

 

We note that calculation is accelerated by >100x by commuting TG,i with the outer summation (SmM ). Lastly, we 
note that the pan-cancer genome-wide Breakpoint Frequency dE/dI slightly exceeds 1, which may be driven by a 
mutational bias for CNAs to arise in open chromatin (Supplemental Figure 20). 

Cancer subtype analysis. All tumor subtypes in TCGA and ICGC were grouped into 9 sub-categories, based on 
broad, predominantly-anatomical features. Anatomical features (i.e. organ and systems of organs), rather than 
histological features or inferred cell-of-origin, were used as groupings because we believe that the fitness effects 
of mutations should be predominantly defined by the environment of the tumor. Nevertheless, we observed 
attenuated selection in both drivers and passengers in many broad histologically-defined classifications (e.g. 
adenocarcinomas & sarcomas). For all cancer grouping analysis (broad and subtype), tumors were stratified into 
bins by the total number of substitutions (dN + dS) on a log-scale. Since tumor subtypes vary in their range of 
mutational burdens, (e.g. KIRC cancer subtypes only have tumors with <100 substitutions), dN/dS values in the 
lowest and highest mutational burden bin for each cancer-subtype are shown.  

Specific cancer subtype categories were taken directly from the NCI Genomic Data Commons (GDC)12. 
Because CNAs were downloaded from COSMIC, CNA datasets were not classified with this same ontology. Table S1 
details how CNA classifications were mapped on GDC categories (and sometimes more broadly-defined groups). All 
subtypes with >200 samples were used in our CNA subtype analyses (Supplemental Figure 13).  

An evolutionary model with Hill-Robertson Interference. Somatic cells in our populations are modeled as 
individual cells that can stochastically divide and die in a first-order (memoryless) Gillespie Algorithm. This model 
was developed and described previously22. During division, cells can acquire advantageous drivers with rate µTd 
and deleterious passengers with rate µTp – these values specify the mean of Poisson-distributed pseudo-random 
number (PRN) generators that prescribe the number of drivers and passengers conferred during division (e.g. the 
number of drivers per division nd = Poisson[nd = k; λ = µTd ] = λk e-k / k! ). The Distribution of Fitness Effects (DFE) 
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conferred by each driver and each passenger are Exponentially-distributed PRNs with probability densities P(si = x; 
sd) = Exp[-x/sd]/sd and P(si = x; sp) = -Exp[-x/sp]/sp respectively. Simulations with other exponential-family DFEs do 
not qualitatively differ from these exponential distributions23. The aggregate absolute cellular fitness is 𝑓 =
∏ (1 + 𝑠/)vww	FG,v,/IxK
/  in our Multiplicative Epistasis model and Δ𝑓 = 𝑠//(1 + 𝜈𝑓) with n = 1 in our Diminishing-

Returns Epistasis Model where Df is the change in cellular fitness with each mutation (borrowed from [PMID: 
9888858]). The rate of cell birth is inversely proportional to cellular fitness, while the rate of cell death 𝐷(𝑁;𝑁}) =
Log[1+ (

(Djl)(�
] increases with the population size of the tumor N. With these birth and death processes, mean 

population size abides by a Gompertzian growth law in the absence of additional mutations, which is scaled by the 
mean cellular fitness E[N(< f >)] = Log[1 + < f > / N 0] (derived from Master Equation23). While, programmatically, 
mutations exclusively affect the birth rate and the constraints on growth exclusively affect the death rate, we 
previously demonstrated that birth and death rates are generally nearly-balanced such that dynamics are not 
affected by this design choice. Simulations progressed until tumor extinction (N = 0 cells), malignant 
transformation (N = 106 cells), or until approximately 100 years had passed (18,500 generations). Only fixed 
mutations (present in the Most Recent Common Ancestor) within clinically-detectable growths were analyzed in 
our ABC pipeline. The behavior of this model has been described previously22,23 and the most relevant assumptions 
of this model and their effects on the conclusions of this study are described in Table S2.  

Cells in our populations are fully described by their accrued mutations, and birth and death times. Birth 
and death events were modeled using an implementation of the Next Reaction24, a Gillespie Algorithm that orders 
events using a Heap Queue. Generation time in our model was defined as the inverse of the mean birth rate of the 
population: 1/ <B(d, p)>. While all mutation events occurred during cell division, if mutations were to occur per 
unit of time (rather than per generation), rapidly growing tumors would acquire drivers at a slightly slower rate as 
generation times decline over time. This effect, however, is negligible compared to the variation in waiting times 
conferred by the variation in mutation rates (division times merely double, while mutation rates vary by 100,000x). 

This simply evolutionary model is defined by five parameters µTd, µTp, sd, sp, and N0. The target size of 
drivers is defined as the approximate number of nonsynonymous mutations in the Bailey Driver Screen Td = (# of 
driver genes)•(mean driver length)•(fraction of SNVs that are nonsynonymous) = 300 genes • 1298 loci/gene • 0.737 
nonsynonymous loci / loci = 286,886 nonsynonymous loci. The target size of passengers was simply the remaining 
loci in the protein coding genome, Tp = 20,451,136 nonsynonymous loci.  The mutation rate was constant 
throughout each tumor simulation and randomly-sampled from a uniform distribution in log-space that ranged 
from 10-12 to 10-7 mutations•loci-1•generation-1.  While tumors were initiated from this broad range, successful 
tumors (N > 106 cells) were almost always restricted to mutation rates between 10-10 and 10-8 (Supplementary 
Figure 18), as tumors with mutation rates drawn below this range almost never progressed to cancer within 100 
years and tumors with mutation rates drawn above this range went extinct through natural selection.  

The likelihood that tumors progress to cancer in the presence of deleterious passengers depends heavily 
on the initial population size N0 of the tumor. This dependence was studied previously22, where it was 
demonstrated that reasonable evolutionary simulations (those that progress to cancer >10% of the time, but less 
than 90% of the time) are restricted to a four-dimensional manifold N* within the five-dimensional phase space of 
parameters. For this reason, N0 = N*(sd, sp, µTd, µTp) was determined by the other four parameters. To first-order, 
this manifold is Tp sp / Td sd2, however a more precise estimate (Eq. S8 of 22) incorporating more precise estimates 
of Muller’s Ratchet and the effects of hitchhiking on both driver and passenger accumulation rates, which does not 
exist in closed form was used. Additionally, at very low values of sd, progression to cancer is limited by time, not by 
the accumulation of deleterious passengers. Hence, we assigned N0 such that: 

𝑁} = 𝑀𝑎𝑥(�[𝑃�vx�DE(𝑁} 𝑁∗⁄ ) = 0.5, 	𝑡�vx�DE���������(𝑁} 𝑁∗⁄ ) = 	18,500	generations] 

Here, Pcancer and tcancer – the likelihood and waiting-time to cancer – are defined by equations S8 and S10 
respectively in 22. N0 was determined from these equations using Brent’s Method. Supplementary Figure 15 depicts 
the values of N0, which ranged from 1 to 100 for all simulations. All code for the simulations, associated theoretical 
analysis, and generation of summary statistics will be available at https://github.com/petrov-lab/pdSim. 
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In tumors that progress to malignancy (N = 106), only fixed nonsynonymous mutations (present in all 
simulated cells) were recorded. We also recorded (i) the fitness effect of these mutations, (ii) the mean population 
fitness, (iii) the number of generations until malignancy, and (iv) the mutation rate. These two values were used to 
generate the number of synonymous drivers and passengers, where P(ds = k) = Poisson[k; λ = µTd/p /r tMRCA] 
defines the number of synonymous drivers/passengers conferred, tMRCA represents the number of division until 
the Most Recent Common Ancestor arose in the simulation, r = 2.795 represents the ratio of nonsynonymous to 
synonymous loci within the genome, weighted by the genome-wide trinucleotide somatic mutation rate, and the 
Poisson PRN generator was defined above. In simulations where synonymous drivers could arise, a fraction of the 
recorded nonsynonymous mutations (ranging from 0 – 20%) were simply re-labeled as synonymous drivers (as 
opposed to nonsynonymous drivers). This was done, again, by Poisson-sampling in proportion to the desired 
fraction for each cancer simulation.  

20 x 20 combinations of sd and sp parameters were simulated (Supplemental Figure 14 & 15). Simulations 
were repeated until 10,000 cancers at each parameter combination were obtained or until 10 million tumor 
populations were simulated. While we attempted to initiate tumors at a population size where the probability of 
progression to cancer was 50%, some parameter combinations still did not yield 10,000 cancers after 10 million 
attempts (i.e. Pcancer < 0.1%). These combinations were predominately at low values of sd, which were far from the 
MLE estimate of sd and represent unrealistic evolutionary scenarios, as drivers cannot be weakly beneficial, 
relegated to only 300 genes, and yet still overcome the deleterious load that passengers impart within 100 years. 
These simulations are annotated as “Progression Impossible.” Simulation parameter sweeps were performed for 
both the Multiplicative and Diminishing Returns Epistasis models. Twenty fractions of synonymous drivers were 
also generated (ranging from 0% to 20%). These fractions were generated by simply re-labeling the driver 
mutations which conferred fitness (generated during the simulation) as synonymous, instead of nonsynonymous.  

Summary statistics of simulated and observed tumors. For both simulated and observed data, we summarized 
dN/dS rates versus mutational burden for drivers and for passengers by decade-sized bins: (0, 10], (10, 100], (100, 
1,000]. Mutational burden for simulations was defined as the total number of substitutions (dN + dS) – exactly as it 
was defined for observed data. For simulated data, dN/dS = dN/(dS • r). Like observed data, dN/dS rates attenuated 
towards 1 for both drivers and passengers for all values of sd and sp.  

 Mutational Burdens (MB) for simulated and observed data were summarized with the parameters of a 

Negative Binomial distribution, where 𝑃(MB = 𝑘; 	𝑛, 𝑝) = �𝑘 + 𝑛 − 1𝑛 − 1 �𝑝x(1 − 𝑝)�. This distribution has been 

used previously to summarize the mutational burdens of human tumors 25 and exactly defines the expected 
number of mutations at transformation in a Multi-Stage Model of Tumorigenesis26 when n drivers are needed for 
transformation and the probability that any mutation be a driver is 1 – p 27. Both n and p were used to summarize 
MB. These quantities were determined by Maximum Likelihood optimization of the probability mass function 
above over the support of mutational burdens of [1, 1,000] substitutions. The Han-Powell quasi-Newton Least-
squares method was used for optimization.  

 Age-dependent Cancer Incidence rates (CI) were summarized with the parameters of a Gamma 
distribution, where 𝑃(𝐶𝐼 ≤ 𝑡; 	𝑘, 𝜃) = 	 l

�(�)
𝛾 �𝑘, ,

�
�. Here, 𝛾(𝑠, 𝑥) = ∫ 𝑡K	j	l𝑒j,𝑑𝑡�

}  is the lower incomplete gamma 

function and G(k) = g(k, ¥) is the regular gamma function. Similar to our summarization of mutational burdens, 
this distribution is a generalization of the exact waiting time to transformation expected from a Multi-Stage Model 
of Tumorigenesis when tumors arise at a uniform rate over time, require k drivers for transformation, and wait an 
average time of q  between drivers 27. This Cumulative Distribution Function was fit to observed incidence rates for 
all patients above 20 years of age using the least squares numerical optimization defined above (All cancer sites 
combined, both sexes, all races, 2012 – 2016 28). Patients under 20 years of age were excluded because cancers in 
these patients generally arise from germ-line predispositions to cancer, which are not directly modeled by our 
simulations, not detected as somatic mutations, and result in age-incidence curves that do not agree with a 
Gamma distribution26. Because all cancer simulations are initiated at t = 0 (instead of uniformly in time, as is 
presumed in the Multi-Stage Model), the simulated data was fit using the probability density function of this 
distribution (instantaneous derivative) using Maximum Likelihood and the optimization algorithm described above. 
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The cumulative distribution, then, represents the expected age-incidence cancer incidence rate when simulations 
begin at uniformly-distributed moments in time and, thus, was used to generate Figure 3D. Only the shape 
parameter k was used in ABC (and q  was ignored), as this parameter only specifies the dimensionality of time 
(simulation time was measured in cellular generations, not years) and all values of q  in our simulations are 
equivalent under a Gauge transformation. Additionally, we do not expect the exact times of incidence to be 
particularly informative as the time of transformation is somewhat earlier than the time of detection.  

Use of Approximate Bayesian Criterion (ABC) for model selection and parameter inference. The main steps of an 
ABC analysis follow the general scheme of any Bayesian analysis: (1) formulating a model, (2) fitting the model to 
data (parameter estimation), and (3) improving the model by checking its fit (posterior-predictive checks) and (4) 
comparing it to other models 29,30. 

 The nine summary statistics described above were used to compare simulations to observed data. 
Agreement was summarized with a Log-Euclidian distance, as all summary statistics resided on the domain [0, ¥) 
and log-transformation of the summary statistics minimized heteroscedasticity of the simulated data relative to a 
square-root or no transformation. Variance of the summary statistics was not normalized. ABC was performed 
using the `abc` R package29. 

The rejection method (Feedforward Neural Net) and tolerance (0.5) were chosen based on their capacity 
to minimize prediction error of the simulated data using Leave-one-out Cross Validation (CV, Supplemental Figure 
16A). 10,000 instances of the neural network, which was restricted to a single layer, were initiated and the median 
prediction of these networks were used. These parameters were used for both model comparison and parameter 
inference. The posterior model probability (postpr) was used to compare the two epistatic models (Diminishing 
Returns versus Multiplicative). The likelihood of the data under the Diminishing Returns model (14%) was less than 
the likelihood under the Multiplicative Epistasis Model (86%).For parameter inferencing, the sd and sp prior values 
were log-transformed.  

 For the synonymous driver model, the base model (without synonymous drivers) was simply the lowest 
quantity of synonymous drivers (0%) in the parameter sweep of synonymous driver quantities (Supplemental 
Figure 16B). The posterior probability mass of this value 0.043 was used as the one-sided p-value for the null 
hypothesis that these two models are equally predictive. Although the synonymous driver model agreed with the 
observed data slightly-better, sd and sp parameters could not be inferred from the data because the potential for 
synonymous drivers destroys the utility of dN/dS statistics – dN/dS is predicated on the notion that synonymous 
mutations are neutral. Virtually any value of dN/dS is attainable when the right combinations of selective pressures 
on nonsynonymous and synonymous are paired (Supplemental Figure 16C).  

Estimate of total fitness effects of drivers and passengers. To extrapolate the results of our simulations and ABC 
model comparison to real cancers, we simulated 100,000 cancers at the MLEs of sd and sp to determine (i) the 
mean fitness benefit of fixed drivers and fixed passengers, (ii) the typical number of drivers accumulated by a 
cancer (median 5), (iii) the mutation rates of successful tumors (Supplementary Figure 18), and (iv) the total fitness 
change of somatic cells. Because drivers and passengers were both drawn from exponential distributions of fitness 
effects, the mean fitness effect of fixed drivers was ~40% greater than the mean fitness effect of sampled drivers 
(sd), while the mean fixed effect of fixed passengers was ~20% less than the mean fitness effect of sampled 
passengers (sp). The median total aggregate cost of passengers was determined by multiplying the median number 
of nonsynonymous passengers in sequenced cancers by the mean fitness cost of fixed passengers. The total fitness 
change of somatic cells was extracted directly from the simulations.  
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Supplementary Figures 

Supplemental Figure 1. Schematic of our permuted dN and dS calculation. 
Permuted synonymous and nonsynonymous counts are used to account for mutational 
biases in dN/dS calculations. Observed mutations and their 3-nucleotide context is 
shown in a solid gray bar. Permuted mutations with the same 3-nucleotide context are 
shown in dashed gray lines.  
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Supplemental Figure 2. Permutation-based null model of mutagenesis corrects 
for mutational biases in dN/dS calculations. Simulations (N = 100) of negative 
selection under extreme mutational bias scenarios where all mutations are generated 
from a single Mutational Signature (e.g. APOBEC or smoking, COSMIC Signatures 1-9, 
grey titles). Bias-corrected dN/dS values calculated from these simulations are 
compared to simulated levels of negative selection. Colors denote bias-corrected dN/dS 
before negative selection was simulated, which is expected to be neutral (~1). Negative 
selection is simulated as the probability of randomly removing nonsynonymous 
mutations, (e.g. a Simulated dN/dS of 0.1 defines simulations where each 
nonsynonymous mutation had a 90% probability of removal). Shapes correspond to 
different numbers of sites simulated. Black line identifies perfect correspondence 
between bias-correct dN/dS and Simulated (true) dN/dS.  

  

8 9

4 5 6

Mutational Signature 1 2 3

0.25 0.50 0.75 0.25 0.50 0.75

0.25 0.50 0.75

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Simulated (true) dN/dS ( 1 - Probability of Non-Syn Mut Removed)

dN
(obs)/dN

(per)

dS
(obs)/dS

(per)

Sites Simulated
1000
10000
100000

dN/dS before simulating
negative selection

0.94
0.96
0.98
1.00
1.02

dN
(obs)/dN

(per)

dS
(obs)/dS

(per)

dN
(obs)/dN

(per)

dS
(obs)/dS

(per)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2019. ; https://doi.org/10.1101/764340doi: bioRxiv preprint 

https://doi.org/10.1101/764340
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplemental Figure 3. Patterns of attenuated selection persist across mutation 
burden metrics, sequencing platforms, mutation calling algorithms, data 
repositories, choice of driver gene set, and null model of mutagenesis. (A) dN/dS 
calculations within passenger and driver gene sets within tumors in ICGC stratified by 
either the total number of intergenic mutations, intronic mutations or substitutions. (B) 
dN/dS calculations within passenger and various pan-cancer driver gene sets within 
tumors stratified by the total number of substitutions. Shown are tumors within TCGA 
called by different mutation callers (Mutect2 vs consensus SNP calls), and SNP calls 
from COSMIC. (C) dN/dS calculations within passenger and driver gene sets within 
tumors in ICGC and TCGA stratified by the total number of substitutions. Instead of 
using our nonparametric null model (e.g. AB and elsewhere), we calculate dN/dS using 
dNdScv8 as a null model of mutagenesis (with default parameters and unrestricted 
quantities of coding mutations per gene). The solid black line (dN/dS = 1) annotates 
expected dN/dS under neutrality in all panels. Error bars are 95% confidence intervals 
determined by bootstrap sampling. 
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Supplemental Figure 4. Mutation burden metrics, used as a proxy for the tumor 
mutation rate, are correlated across datasets. (A) Comparison of the total number of 
substitutions within a tumor and the total number of intergenic or (B) intronic mutations 
within the tumor. (C) Comparison between datasets the correlation of Tumor Mutational 
Burden (TMB) and total number of substitutions for Whole Genome Sequening (WGS) 
of tumors and (D) Whole Exome Sequencing (WES) of tumors. Because all mutational 
burden metric are highly correlated, general patterns of selection are unaffected by 
choice of metric. 
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Supplemental Figure 5. Mutational Burden (defined as dN + dS) is nearly 
orthogonal to dN/dS, reproduces observed patterns of selection when completely 
orthogonalized, and is well-correlated with the genome-wide mutation rate in 
tumor simulations. (A) Theoretical bias of dN/dS (Mean Absolute Deviation from 
neutrality) of mutational burden metrics that contribute to dN/dS calculations. dN + dS 
(i.e. Total Substitutions) imparts less bias than dS (i.e. Total Synonymous Substitutions). 
Bias determined by analytical model of dN/dS with ratios of Poisson-sampled mutation 
tallies (Methods). Bias rapidly decreases with mutational burden for dN + dS. Total 
Substitutions (dN + dS) exhibit less bias than Total Synonymous Substitutions (dS).  (B) 
Patterns of selection persist when independent mutation counts (completely orthogonal) 
were used for estimating selection (dN/dS) and mutational burden (dN + dS). 
Independent accounts were achieved by randomly-partitioned mutations into two halves 
and using one half to calculate dN/dS and the half to calculate Total Number of 
Substitutions separately. Tumors were from TCGA. dN/dS and Error Bars (95% 
Confidence Interval) are same as in Figure 2. Solid black line of 1 denotes dN/dS 
expected under neutrality.  (C) Pearson correlation of both mutational burden measures 
with mutation rate in computational model of tumor evolution (Methods). The mutational 
burdens of ~4 million simulated cancers were compared to their programmed mutation 
rate. dN + dS correlated well with mutation rates across a range of evolutionary 
parameters and was more highly-correlated with mutation rate than dS alone.  
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Supplementary Figure 6. Attenuation of selection with increasing mutational 
burden in both Oncogenes and Tumor Suppressors. dN/dS of passenger and driver 
gene cohorts9 within tumors in TCGA stratified by the total number of substitutions 
present in the tumor (dN + dS). Tumor suppressors (purple), oncogenes (blue) and pan-
cancer driver (green) gene sets are shown. Solid black shows dN/dS values of 1, 
expected under neutrality. Error bars are 95% confidence intervals determined by 
bootstrap sampling. 
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Supplemental Figure 7. No common germline polymorphisms observed in low 
mutation rate cancers. (A) Fraction of mutations that overlap all germline 
polymorphisms in the 1000 Genomes Project within tumors stratified by the total 
number of substitutions. (B) Fraction of mutations that overlap only common (MAF > 
0.05) polymorphisms in the 1000 Genomes Project within tumors stratified by the total 
number of substitutions. WGS and WES datasets are shown. Colors denote mutations 
that are synonymous (blue) or nonsynonymous (red). Strong negative germline 
selection is expected only within common polymorphisms. Because no mutations within 
low mutational burden cancers (≤10 substitutions) overlap common polymorphic sites, 
germline contamination of somatic genome sequencing simply cannot explain the 
observed negative selection in passengers at low mutational burdens.  
 
 

0.0%

2.5%

5%

7.5%

10
0

10
1

10
2

10
3

10
4

10
5

Total Number of Substitutions

O
v
e
rl
a
p
 w

it
h
 1

,0
0
0
  
G

e
n
o
m

e
s
 P

o
ly

m
o
rp

h
is

m
s
 All Polymorphisms

A

0.000%

0.005%

0.010%

0.015%

10
0

10
1

10
2

10
3

10
4

10
5

Total Number of Substitutions

Nonsynonymous

Synonymous

Common Polymorphisms (MAF > 5%)

B

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2019. ; https://doi.org/10.1101/764340doi: bioRxiv preprint 

https://doi.org/10.1101/764340
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
Supplemental Figure 8. Weaker signals of positive selection within cancer-
specific drivers. dN/dS values of passenger and different driver gene sets within 
tumors in TCGA stratified by the total number of substitutions present in the tumor (dN + 
dS). Pan-cancer driver (lime) and cancer-specific (blue) driver gene sets identified by 
Bailey et al. 20189 are shown. Pan-cancer driver genes identified in this study also 
exhibited stronger signatures of positive selection than driver genes identified by 
COSMIC31 (light green) and Intogen10 (forest green). Hence, pan-cancer drivers from 
Bailey et al. 2018 were used throughout this study. Cancer-specific gene sets are 
defined as the top 100 recurrently mutated genes within the particular cancer type, and 
used separately for each of the 33 cancer types in TCGA. Solid black shows dN/dS 
values of 1, expected under neutrality. Error bars are 95% confidence intervals 
determined by bootstrap sampling. 
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Supplemental Figure 9. Breakpoint frequency of CNAs within exomic regions (dE) 
relative to intergenic regions (dI) exhibits similar patterns of selection as 
Fractional Overlap. Calculations of breakpoint frequency32 of exomic regions (dE) to 
intergenic (dI) regions within passenger and GISTIC11 driver gene sets in tumors 
stratified by the total number of CNAs present. dE/dI is shown separately for CNAs 
greater than 100Kb in length (right) and smaller than 100Kb in length (left). Solid black 
line of 1 denotes values expected under neutrality.  Error bars are 95% confidence 
intervals determined by bootstrap sampling. 
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Supplemental Figure 10. Signal of negative selection in subclonal mutations are 
robust to VAF threshold. dN/dS calculations within clonal and subclonal passenger 
and driver gene sets within tumors in TCGA stratified by the total number of 
substitutions. Title of each graph corresponds to increasing VAF threshold value used to 
define ‘subclonal’ (e.g. mutations with a VAF > 0.2 are clonal; mutations with a VAF < 
0.2 are subclonal). Darker colors denote clonal passengers and drivers, while lighter 
colors denote subclonal passengers and drivers. Solid line of 1 is shown  of dN/dS 
values expected under neutrality. Error bars are 95% confidence intervals determined 
by bootstrap sampling. 
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Supplemental Figure 11. Attenuation of negative selection within different 
functional gene sets. dN/dS of passengers within different functional gene sets in low 
and high mutational burden tumors (dN + dS < 10 for low, grey; dn + ds > 10 for high, 
black). Both TCGA and ICGC genomic data were used. Dotted line denotes genome-
wide dN/dS of passengers for all mutation rates. Error bars are 95% confidence 
intervals determined by bootstrap sampling. Patterns of negative selection are not 
specific to any particular functional category (e.g. Essential or Housekeeping genes).  
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Supplemental Figure 12. Attenuation of selection in SNVs persists across cancer 
subtypes and broad cancer group categories. (A) dN/dS in passenger and driver 
gene sets within tumors stratified by the total number of substitutions in broad tumor 
subcategories. Error bars are 95% confidence intervals determined by bootstrap 
sampling. (B) Log-scale heatmap of dN/dS values in passenger and driver gene sets of 
tumors stratified by the total number of substitutions within all 50 cancer subtypes in 
ICGC and TCGA. dN/dS of the lowest and highest mutational burden bin for each 
cancer subtype are shown. 
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Supplemental Figure 13. Attenuation of selection in CNAs is robust to cancer subtypes and 
broad cancer group categories. (A) Normalized fractional overlap (dE/dI) of driver (green) 
and passenger (red) Copy Number Alterations (CNAs) with the human exome for the six 
most commonly-sequenced cancer subtypes (presented in Fig. 2). dE/dI > 1 suggests 
positive selection, while dE/dI < 1 suggests negative selection. Tumors are stratified by 
Mutational Burden (Total CNAs). (B) Same as in (A) for cancer subtypes with >200 
genotyped samples  that were not presented above (nine subtypes). (C-D) dE/dI of 
normalized breakpoint frequency stratified by Mutational Burden and segregated by 
cancer subtype. Subtype groupings are same as (A-B). In general, both dE/dI measures 
exhibit positive selection on drivers that attenuates with mutational burden as well as 
negative selection on passengers that also attenuates with mutational burden across 
tumor subtypes. However, several exceptions are evident – especially for less-
sequenced subtypes (bottom row of B & D). 
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Supplemental Figure 14. dN/dS rates of drivers and passengers in simulated 
cancers with various fitness coefficients. 10,000 simulated tumors were generated 
for various combinations of mean driver fitness benefits (sd) and mean passenger 
fitness costs (sp, Methods). For some parameter combinations, the combined fitness 
cost of passengers overwhelmed the fitness benefit of drivers and prevented cancer 
progression within 100 years (dark grey). dN/dS values of simulated mutations were 
calculated for drivers (left) and passengers (right) at various mutational burden (Total 
number of nonysnonymous and synonymous mutations). Top row is a mutational 
burden of 1 – 10 ; middle row is 11 – 100, and bottom row is 100 – 1,000. Some 
parameter combinations did not produce any tumors with low mutational burdens (light 
grey). Across all parameters, positive selction on drivers and negative selection against 
passengers attenuates with mutational burden. Passengers exhibit minimial negative 
selection in general, despite a collective burden that often prevented tumor progression, 
because of strong Hill-Roberston interference in asexual populations.  
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Supplementary Figure 15. Probability of cancer by age and mutational burdens in 
simulated cancers at various fitness coefficients. Clinical summary statistical of 
simulated tumors at various combinations of mean driver fitness benefits (sd) and mean 
passenger fitness costs (sp, Methods). (A) Initial population size N0 of simulated tumors. 
Initial population size approximates the equilibrium population size of a tumor following 
an initiating driver. Large population sizes are necessary for tumor progression when 
passenger deleteriousness is large compared to driver advantageousness – otherwise 
natural selection cannot drive carcinogenesis. Eventually, tumor progression is not 
possible for any reasonable initial population size (grey area). (B) MLE of Gamma 
distribution shape parameters describing the cancer age-inicidence rates of simulated 
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tumors. A Gamma distribution of age-incidence is expected from the Armitage-Doll 
multistage model of tumorigenesis and describes human age-incidence rates well 
(Methods)26. Larger values correspond to a steeper increase in rate with age; human 
patient rates are ~5 pan-cancer. Scale parameter of the parametric fit is not informative 
because of a Gauge freedom in the model. (C) MLE of shape and (D) scale parameters 
of Negative Binomial distributions describing the mutational burdens of simulated 
tumors. Smaller values of shape parameter correspond to broader distributions of 
mutational burden; human tumors exhibit a value of ~2 pan-cancer. Smaller values of 
scale parameter correspond to a larger mean mutational burden; human tumors exhibit 
a value of ~1/50 (i.e. 50 passengers per rate-limiting driver). 
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Supplementary Figure 16. Implementation and use of ABC for model selection 
and parameter estimation. (A) Leave-one-out Cross Validation (CV) on the simulated 
data was used to select an optimal Rejection Tolerance and optimal rejection method. 
Observed data can be compared to simulated data using model rejection alone (left), or 
by comparing observed data to a (middle) local-linear regression or (right) Feed-
Forward Neural Network (1-layer) model trained on the simulated data. Training a 
machine learning model on simulated data (before comparison to observed data) often 
improves the performance of ABC by smoothing-out stochasticity in the summary 
statistics of simulations. A neural network with a rejection tolerance of 0.5 was used 
because it minimized prediction error of both driver and passenger fitness effects in the 
simulated data (illustrated by dotted lines). This Cross Validation approach to implement 
ABC is advised29. (B) Posterior probability of models of tumor evolution incorporating 
synonymous drivers. The prior distribution of synonymous driver fractions (uniform from 
0% to 20%) is nearly-identical to this posterior distribution. This suggests that nearly all 
models incorporation synonymous drivers can explained observed dN/dS patterns in 
humans, if the right combination of driver fitness benefits (sd) and passenger fitness 
costs (sp) are chosen. (C) Posterior distribution of fitness effect of driver fitness benefits 
(sd) and passenger fitness costs (sp) after synonymous drivers are incorporated. MLE 
(circles) and 95% Confidence Intervals (lines) are reported. Similar to (B), incorporation 
of synonymous drivers undermines the ability of ABC to accurately infer the fitness 
effects of drivers and passengers. 
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Supplementary Figure 17. Evidence of positive selection on synonymous 
mutations within driver genes at low mutational burdens. (A) The quantity of 
synonymous mutations within driver genes was compared to the quantity of 
synonymous mutations within passenger genes and both were normalized by their 
expected frequencies using dNdScv. Black line denotes the genome-wide ratio of 
synonymous drivers to synonymous passengers (~2%, i.e. driver genes are ~2% of the 
human coding genome). At low mutational burdens, a non-significant increase in the 
quantity of synonymous drivers is observed, suggestive of positive selection for these 
mutations. (B) The change in codon usage imparted by all synonymous mutations was 
calculated for oncogenes, tumor suppressors, and passenger genes. Bias in codon 
usage suggests a functional effect of synonymous mutations. Increase in codon usage 
is expected to increase translational efficiency and increase protein abundance. 
Oncogenes are expected to exhibit positive selection for increased codon usage and 
exhibit a non-significant increase as mutational burden declines – consistent with 
positive selection for synonymous mutations within oncogeneic drivers that is 
attenuated by Hill-Robertson interference. Similarly, tumor suppressors are expected to 
exhibit a decrease in codon usage at low mutational burdens, which is indeed significant 
(p = 0.03) presumably because there are more annotated tumor suppressor genes.  
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Supplementary Figure 18. Distribution of Mutation Rates of simulated tumors. (A) 
Mutation rates of all simulated tumors were randomly-sampled from a uniform 
distribution (in log-space) from 10-12 to 10-7 nucleotide-1 • generation-1. (B) In simulations 
that best agreed with observed data (MLE of sd = 18.8%, sp = 0.96%), only tumors with 
intermediate mutation rates progressed to cancer within 100 years. Tumors with lower 
mutation rates do not progress to cancer within the 100-year time constraint of 
simulations, while tumors with exceptionally high mutation rates collapse via mutational 
meltdown.  
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Supplemental Figure 19. Relative contribution of Genetic Hitchhiking and Muller’s 
Ratchet to fix deleterious passengers. Using analytical theory developed in 22,33,34, 
we can estimate the relative rates of genetic hitchhiking and Muller’s Ratchet in our pan-
cancer model of tumor evolution. As the relative strength of driver alterations increase 
(sd) relative to the selective cost of passengers (sp), more passengers hitchhike with 
each driver sweep (left). This increases the relative contribution of observed passengers 
that accumulate via hitchhiking (right). Using the Maximum Likelihood Estimates (MLE) 
of selection for drivers and against passengers, we estimate that an average of 8 
passengers hitchhike with each driver, which account for 5.0% of accumulated 
passengers (the majority, and remainder, accumulate via Muller’s Ratchet). 
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Supplemental Figure 20. Overlap of CNAs with open chromatin region of the 
genome. We determined the overlap of all CNAs with open chromatin regions (ATAC-
seq peaks) of the genome (Methods). Overlap was normalized as described for other 
genomic tracks (e.g. drivers, passengers). CNA breakpoints appear to be enriched in 
open chromatin regions of the genome suggesting that these regions of chromosomes 
are fragile. This elevated overlap may slightly bias dE/dI estimates towards positive 
selection.  
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Supplementary Tables 
 

Table S1. Broad (meta-categories) of cancer subtypes.  

BROAD CATEGORY GDC TUMOR SUBTYPES IN GROUP 
Circulatory (n=371) LAML, DLBC, CLLE, CMDI, MALY 
Endocrine (n=925) ACC, THYM, THCA, PAEN, PCPG 
Urinary (n=1199) BLCA, KICH, KIRC, RECA 
Nervous (n=1059) LGG, GBM, PBCA 

Reproductive (n=3328) BRCA, CESC, EOPC, OV, PRAD, UCEC, TGCT, UCS 
Respiratory (n= 1557) LUSC, LUAD, HNSC 

Skeletal (n=378) SARC, BOCA, MESO 
Digestive (n=2181) ORCA, LIRI, PAAD, STAD, READ, CHOL, COAD, ESCA, GACA, LINC, ESAD, BTCA, 

LIHC 
Skin (n=614) UVM, SKCM, MELA 
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Table S2. Assumptions of model of tumor evolution and anticipated effects 
 

ASSUMPTION ANTICIPATED EFFECT ON CONCLUSIONS REFERENCES 

Exponential DFE for drivers & passengers ABC estimates effective selection coefficients 35 

Cells are well-mixed (no spatial structure) Reduced Hill-Robertson interference 36–38 

Gompertzian growth dynamics in-between 
drivers 

Decreased inferred strength of drivers relative to no 
growth constraints 

22 

Only 50% of tumors progress to cancer Mutational burdens widen as progression probability 
declines 

22 

No (reciprocal) sign epistasis Stronger fitness benefits of drivers in adaptive contexts 39,40 

Constant mutation rate for each tumor Hill-Robertson interference would increase 41 

Simulated tumor is genotyped at transformation Late (subclonal) mutations are ignored; incidence age 
reduced 

38 
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