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Abstract

Genes in the same organism vary in the time since their evolutionary origin. Without horizontal gene transfer, young genes are
necessarily restricted to a few closely related species, whereas old genes can be broadly distributed across the phylogeny. It has
been shown that young genes evolve faster than old genes; however, the evolutionary forces responsible for this pattern
remain obscure. Here, we classify human–chimp protein-coding genes into different age classes, according to the breath of
their phylogenetic distribution. We estimate the strength of purifying selection and the rate of adaptive selection for genes in
different age classes. We find that older genes carry fewer and less frequent nonsynonymous single-nucleotide polymorphisms
than younger genes suggesting that older genes experience a stronger purifying selection at the protein-coding level. We infer
the distribution of fitness effects of new deleterious mutations and find that older genes have proportionally more slightly
deleterious mutations and fewer nearly neutral mutations than younger genes. To investigate the role of adaptive selection of
genes in different age classes, we determine the selection coefficient (c 5 2Nes) of genes using the MKPRF approach and
estimate the ratio of the rate of adaptive nonsynonymous substitution to synonymous substitution (xA) using the DoFE
method. Although the proportion of positively selected genes (c . 0) is significantly higher in younger genes, we find no
correlation between xA and gene age. Collectively, these results provide strong evidence that younger genes are subject to
weaker purifying selection and more tenuous evidence that they also undergo adaptive evolution more frequently.
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Introduction
Fully sequenced genomes from a wide range of species al-
low us to determine the phylogenetic distribution of pro-
tein-coding genes in the genomes of these species. The
phylogenetic distribution of a gene contains information
about the gene’s evolutionary age (i.e., the time when
the gene first appeared in some ancestral genomes) and
the gene’s propensity to persist in genomes. Without hori-
zontal gene transfer, genes with broader and deeper phylo-
genetic distributions are necessarily older and more
persistent than genes that are originated recently or do
not tend to persist for long periods. Young genes, also
termed lineage-specific genes, tend to have either restricted
or patchy phylogenetic distributions.

Young or lineage-specific genes appear to evolve faster at
the protein level than ancient or broadly distributed genes
(Domazet-Loso and Tautz 2003; Krylov et al. 2003; Daubin
and Ochman 2004; Alba and Castresana 2005; Wang et al.
2005; Cai, Woo, et al. 2006; Kuo and Kissinger 2008; Toll-

Riera et al. 2009; Toll-Riera, Castelo, et al. 2009, Castresana
and Alba 2008; Kasuga et al. 2009; Wolf et al. 2009). For
instance, Alba and Castresana (2005) found the inverse
relationship between the evolutionary age and protein-
divergence rate of human genes. Cai, Woo, et al. (2006)
found that genes restricted to two independent fungal lin-
eages evolve at faster rates than more widely distributed
genes. Similar findings have also been reported in rodents
(Wang et al. 2005), Drosophila (Domazet-Loso and Tautz
2003), parasitic protozoa (Kuo and Kissinger 2008), and
bacteria (Daubin and Ochman 2004).

Despite the same pattern repeatedly found in various or-
ganisms, the underlying evolutionary forces responsible for
such a phenomenon remain obscure. Specifically, it is not
clear whether the anticorrelation between evolutionary
age and protein-divergence rate are due to the variation
in the strength of purifying selection or due to the variation
in the rate of adaptive evolution. Distinguishing these two
causes is of fundamental importance and provides clues
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about the role of newly created genes. Weaker purifying se-
lection in young or lineage-specific genes would imply that
these genes are less ‘‘important’’ in the sense that defects in
these genes have less effect on fitness. The alternative,
although not a mutually exclusive, possibility is that genes
recently added to the genome participate more in the
lineage-specific adaptive evolution.

Here, we study the molecular evolution of genes in hu-
mans and chimps through the window of phylogenetic pro-
file of these genes. We investigate all human–chimp genes
over the same evolutionary distance in way that is both con-
sistent and avoids problems with saturation. Particularly,
comparing sequences of human and chimp orthologs in
conjunction with interrogating sequence polymorphisms
in humans, we estimate the rates of evolution at synony-
mous and nonsynonymous sites and the levels of selective
constraint for all human–chimp protein-coding genes.
To estimate relative prevalence of positive selection of dif-
ferent age classes, we calculate the ratio of adaptive
nonsynonymous-to-synonymous substitution rates (Eyre-
Walker and Keightley 2009) and the scaled selection coef-
ficient (Bustamante et al. 2002, 2005).

To classify genes, we use three phylogenetic measures:
lineage specificity (LS), phylostratum level (PL), and the num-
ber of gene losses (GLs). Eachmeasure represents a different
age-classifying system, capturing a unique feature of phylo-
genetic profiles of genes. LS measures the breadth and
depth of the phylogenetic profiles but focuses only on genes
that have nonpatchy phylogenetic distributions (Cai, Woo,
et al. 2006). PL focuses on homologs and determines the
age of the gene family by strict parsimony that assumes
that a gene family can be lost but cannot reevolve indepen-
dently in different lineages or be horizontally transferred
(Domazet-Loso et al. 2007). GL captures the patchiness
of phylogenetic profiles for genes that have the same age
measured using strict parsimony. We obtain qualitatively
identical results using all three measures of gene age.

We confirm that younger and less broadly distributed
genes evolve faster at the protein level. We determine that
these genes are subject to weaker purifying selection in hu-
mans and provide some evidence that positive selection does
playarole inthefasterevolutionofyoungergenes.Wediscuss
implications of these results for the understanding of human
evolution and human health.We also put these results in the
context of classical models of molecular evolution.

Materials and Methods

LS of Genes
LS describes how specifically a gene and orthologs of the
gene are distributed on a given phylogeny (Cai, Woo, et al.
2006). If a gene and its orthologs are present in the species
all belong to a single lineage, the gene is considered specific
to this particular lineage. On the other hand, if a gene and its

orthologs are present in all the species of all lineages on the
phylogeny, the gene is a ‘‘common’’ gene not specific to any
lineages. Most of genes, however, have a certain level of LS
laying between those of two ‘‘extremes’’ scenario—they are
present in some but not all species.

To calculate LS for human genes in regard to the primate
lineage, we used the phylogeny of 11 eukaryotic species, in-
cluding Homo sapiens, Pan troglodytes, Mus musculus, Bos
Taurus, Gallus gallus, Xenopus tropicalis, Danio rerio, Ciona
intestinalis, Drosophila melanogaster, Caenorhabditis ele-
gans, and Saccharomyces cerevisiae (fig. 1A). The topology
of the phylogeny, supported by a range of molecular and
morphological data (Blair et al. 2002; Bourlat et al. 2006;
Nikolaev et al. 2007; Dunn et al. 2008), was retrieved from
the National Center for Biotechnology Information (NCBI)
Taxonomy database (Wheeler et al. 2000). The distribution
of each human gene (i.e., the presence–absence pattern
of its orthologs) on the tree forms the phylogenetic profile
of the gene. We obtained phylogenetic profiles of genes
from PhyloPat v41 (Hulsen et al. 2006) (http://www.cmbi
.ru.nl/pw/phylopat/). Phylopat uses information of orthologs
predicted in Ensembl compara database (Birney et al. 2006)
to construct phylogenetic profile for each gene according to
the presence or absence of orthologs of the gene in other
species. The software pipeline of Ensembl compara database
collected gene pairs of the best reciprocal hits and best score
ratio values from a WUBlastp or Smith–Waterman whole-
genome comparisons and then created a graph of gene re-
lations, followed by a clustering step. The clusters were then
applied to build a multiple alignment and a phylogenetic
tree, which is reconciled with the species tree. From each
reconciled gene tree, the orthologous relationships were in-
ferred (for details, see [Vilella et al. 2009] and http://www
.ensembl.org/info/docs/compara/homology_method.html).
In figure 1A, we represented the phylogenetic profiles of
human genes with a string of 11 symbols: and indi-
cate the presence and absence of ortholog in the corre-
sponding species, respectively. In our data analysis, we
only included genes whose string representation of phylo-
genetic profile belongs to one of ten ‘‘regular’’ given pat-
terns, in which and are constitutively arranged, so
that LS level can be unambiguously assigned to these
regular patterns and hence to genes whose phylogenetic
profiles match these patterns. We discarded 10,032 (out
of 20,150) genes that showed ‘‘irregular’’ phylogenetic
profiles.

PL of Genes
Phylostratum is a set of genes from an organism that coalesce
to founder genes having common phylogenetic origin
(Domazet-Loso et al. 2007). Using a phylostratigraphic
approach, Domazet-Loso and Tautz (2008) assigned all
human protein-coding genes into 19 phylostrata. Here, we
describe the procedure they used to determine gene’s PL.
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Briefly, BlastP algorithm (E value cutoff 0.001) was used to
search human proteins against the NCBI nonredundant
(NR) database to determine the presence/absence of homo-
logs. The 0.001 cutoff value presents a good compromise be-
tween specificity and sensitivity of sequence similarity search
(Domazet-Loso and Tautz 2003). Before the sequence search,
the NR databasewas cleaned upwith respect to sequences of
uncertain or missing taxonomic status, unreliable phyloge-
netic positions, and filled up with complete genomes that
were absent in the database but otherwise were publicly
available. In addition, TBlastN search was conducted against
substantial trace and expressed sequence tags archives of
Porifera, Cyclostomata, and Chondrichtyes as for these
internodes complete annotated genomes were lacking.

We obtained PL of all human genes from the supplemen-
tary data of Domazet-Loso and Tautz (2008). The numbers
of genes in different PL groups vary (supplementary fig. S1,
Supplementary Material online). To facilitate data analysis,
we merged 19 PL groups into nine bins (fig. 2A). Empirically,
neighboring phylostrata (e.g., phylostrata 9–11) with few
genes were merged into one bin. Phylostrata with more
genes (e.g., phylostrata 8 and 6) were assigned as two sep-
arate bins. The ‘‘empirically populated binning’’ procedure
ensured the difference of gene number between bins
was less substantial (supplementary fig. S1, Supplementary
Material online). We also binned genes using an alternative
procedure—‘‘equally populated binning.’’ We added a ran-
dom variable, e; norm(0, 0.001), to PL value of each gene,
making PL a continuous variable. The value of e was small
such as to not change the original rank of PL of genes sub-
stantially, but, by adding an e, each gene obtained a distinct
rank. To generate equally populated bins, we adjusted the
width of bins so that the same number of genes would fall
into each bin. Two binning procedures produce similar
results in subsequent data analyses. We only report results
obtained using the first procedure. Note that this analysis
was performed with genes in Ensembl database v45, for
which the PL values were originally estimated (Domazet-
Loso and Tautz 2008).

Gene Sets and Divergence Rate
To estimate the divergence rate of human protein-coding
genes, we retrieved coding sequences of 20,150 human
genes and their corresponding orthologs in chimpanzee ge-
nome from Ensembl database (Birney et al. 2006; Hubbard
et al. 2007). Nonsynonymous substitution rate (Ka) and
synonymous substitution rate (KS) for human–chimpanzee
orthologous pairs were calculated using the counting
method of Nei and Gojobori (1986) implemented in MBE-
Toolbox (Cai et al. 2005; Cai, Smith, et al. 2006). Before com-
paring median values of Ka and Ks between different groups
of genes, we removed data points of 70 ribosomal genes
(that are extremely slow-evolving genes that lack divergence
information), 228 sex-chromosomal genes (that are under

different strength of selection compared with autosomal
genes), and 1,997 pseudogenes listed in http://Pseudogene
.org/ (Karro et al. 2007). We further removed data points
with Ka ! 0.05 and/or KS ! 0.05 from 523 human–
chimpanzee gene pairs to reduce the problem introduced
by misalignment of coding sequences. Similar overall results
were obtained when Ka and KS (or denoted as dN and dS)
were calculated using the maximum-likelihood method
(Goldman and Yang 1994) implemented in PAML (Yang
1997). Given the fact that chimpanzees are the most closely
related species to humans and divergence between human–
chimp ortholog pairs may be extremely low, it is possible that
the low values of Ka and KS for some genes may just be an
artifact of the choice of species to do the comparison. To
eliminate the concern, we recomputed Ka and KS with
human–macaque ortholog pairs. The sequences of the cor-
responding macaque orthologs were again obtained from
Ensembl database (Birney et al. 2006; Hubbard et al.
2007). We obtained similar result as above (supplementary
fig. S2, Supplementary Material online). In addition, instead
of computing Ka and KS for individual genes, we summed
divergence sites of genes in the same age classes and calcu-
lated pooled Ka and KS for each age class (same procedure as
described below). We obtained qualitatively unchanged
results (data not shown).

We also obtained the numbers of nonsynonymous and
synonymous sites (N and S) and the numbers of nonsynon-
ymous (Dn) and synonymous (Ds) differences in coding se-
quences of human–chimpanzee genes resequenced in the
study of Bustamante et al. (2005), who applied exon-specific
polymerase chain reaction amplification to 20,362 loci in 39
humans and one chimpanzee to obtain sequence variants in
these regions. We summed up Dn (and Ds) and N (and S) for
genes in the same group to calculate pooled Ka and KS (i.e.,
Ka and KS for groups, in which sequences of genes are
essentially concatenated). To obtain the 95% confidence in-
terval (CI) of pooled Ka and KS, we used the bootstrapping
approach. For each group of genes, we constructed 10,000
resamples of the observed gene sets (and of equal size to the
observed gene sets), each of which was obtained by ran-
domly sampling with replacement from the original genes
in the group. The CIs of pooled Ka and KS were then ob-
tained using percentile method from values of pooled Ka

and KS for resamples.

SNPs and Polymorphic Consequences
We computed A* (the number of nonsynonymous single-
nucleotide polymorphism [nSNP] per nonsynonymous site)
as the ratio between total nSNPs and total number of non-
synonymous sites of genes in the same class, and S* (the
number of synonymous SNPs [sSNPs] per synonymous site)
as the ratio between total sSNPs and total number of syn-
onymous sites of genes in the same class. To determine the
nonsynonymous and synonymous status of SNPs, we
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mapped SNPs (from dbSNP or Perlegen) onto the coding re-
gions of the longest transcripts of human genes using func-
tions in PGEToolbox (Cai 2008). For Applera SNPs, we used
the nonsynonymous and synonymous classification from the
original study (Bustamante et al. 2005). We systematically
repeated SNP-related analyses using three SNP data sets: 1)
Applera SNPs in the 11,624 resequenced genes from the
study of Bustamante et al. (2005), 2) SNPs in dbSNP build
126, and 3) Perlegen SNPs (Hinds et al. 2005). Applera SNPs
were identified by resequencing and thus suffer from less
severe ascertainment biases. For dbSNP data, we removed
SNPs that are not validated (dbSNP category 0) and retained
NCBI designated ‘‘double hit’’ or ‘‘submitter validated’’
SNPs, which are more likely to beveal. For Perlegen data,
we used all SNPs ascertained in all populations. We obtained
allele frequencies of Applera SNPs and Perlegen SNPs to
perform allele frequency spectrum analysis.

Robustness Tests for SNP Analyses
To conduct robustness tests against several confounding
factors, we identified singleton genes, masked CpG-related
SNPs, grouped genes according to functional categories,
and classified genes according to their local genomic
guanine-cytosine (GC) content. To identify singleton genes,
we retrieved the data set of predicted human paralogous
genes from Ensembl database (Birney et al. 2006; Hubbard
et al. 2007). Singleton genes are those that do not have any
paralogs.

Single-nucleotide mutations at CpG sites are much more
frequent than at other sites (Cooper andKrawczak 1989; Sved
and Bird 1990). To control for the effect of CpG-related SNPs,
we generated the subset of SNPs excluding all CpG-related
SNPs. To do so, we downloaded neighboring nucleotides of
each SNP from human genome sequence from Ensembl
v41 (Birney et al. 2006). SNPs were considered potentially
CpG related in cases when: 1) A/G SNPs proceeded by a C
or 2) C/T SNPs followed by G (Webster and Smith 2004).

The association between Gene Ontology (GO) terms and
individual genes was obtained from FatiGO (Al-Shahrour
et al. 2004). We used genes whose functional annotation
contains the same GO term and tested whether the pattern
between Ka/KS (or A*/S*) and LS remains the same as that
obtained from all genes. We obtained the result for GO
terms: ‘‘cellular physiological process,’’ ‘‘metabolism,’’ ‘‘reg-
ulation of cellular process,’’ ‘‘regulation of physiological pro-
cess,’’ and ‘‘cell communication,’’ which were associated
with at least 25 genes in all of LS groups.

To test the effect of regional nucleotide composition
of genes, we obtained the isochore map of human ge-
nome from the supplementary table of Costantini et al.
(2006). Genes within isochore family L1 and L2 were
considered in the GC-poor regions; genes within isochore
families H1, H2, and H3 were considered in the GC-rich
regions.

We obtained global mRNA expression data from Gene
Expression Atlas (http://wombat.gnf.org) (Su et al. 2004).
We included normal adult samples from 54 NR tissue types
in the analysis. The expression level of each probe set in
a given tissue was calculated as the mean of log (base 2)
signal intensities of all samples after GC-robust multi-array
average normalization (Wu et al. 2004). When multiple
probes were mapped onto the same gene, the probe with
the highest expression level was used as the report probe for
this gene.We calculated themean expression level of a gene
(aveExp) as the mean of log signal intensities of probe sets
across all tissues. We also calculated the maximum expres-
sion level among all tissues (maxExp) and the heterogeneity
of expression level across all tissues (hetExp) for all genes
with expression data available according to our previous
study (Cai et al. 2009).

Estimation of the Ratio of the Rate of Adaptive
Nonsynonymous Substitution to Synonymous Sub-
stitution (vA)
The distribution of fitness effects (DFEs) of new deleterious
mutations and xA were estimated by using the method of
Eyre-Walker and Keightley (2009) implemented in the pro-
gram DoFE v2.1 (http://www.lifesci.susx.ac.uk/home/Ada-
m_Eyre-Walker/Website/Software.html). To make the input
file, we compiled Applera data obtained from Bustamante
et al. (2005) and Lohmueller et al. (2008), which contain
the numbers of nucleotides divergent between human
and chimp and the site frequency spectra (SFS) for sSNPs
and nSNPs, respectively. Genes of different LS groups were
separated into different sets. Each set comprises the num-
bers of selected and neutral divergence polymorphism sites,
as well as SFS vectors. DoFE provides an option for excluding
singletons in SFS. Our result was unaffected qualitatively us-
ing the analysis with this option, thus only the result ob-
tained without excluding singletons is reported below.

Estimation of Selection Coefficient (g) using MKPRF
We used the program MKPRF (http://cbsuapps.tc.cornell
.edu/mkprf.aspx) to estimate the selection coefficient
c (52Nes) of genes. The program MKPRF samples from
the posterior distribution of parameters in the MKPRF mod-
els of (Bustamante et al. 2002) and (Barrier et al. 2003) using
a Markov Chain Monte Carlo algorithm based on Poisson
random field (PRF) theory (Sawyer and Hartl 1992). We used
a subset of genes with at least two variable nonsynonymous
sites in the alignment (i.e., Pn þ Dn ! 2). Using exactly the
same approach as implemented in Bustamante et al. (2005),
we applied the nonhierarchical model by specifying the flag
FIXED_VARIANCE5 1, such that a single Gaussian prior of c
with a mean of 0 and the standard deviation (SD) (r) of 8 is
set for all loci (Bustamante CD, personal communication).
Slightly deleterious SNPs can lead to an underestimate of
the rate of adaptive evolution because they contribute to
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polymorphism but rarely become fixed. The effects of these
slightly deleterious mutations can be partially controlled by
removing mutations segregating at low frequencies (Fay
et al. 2001). To circumvent the problem of unequal levels
of slightly deleterious polymorphisms present in genes of
different LS groups, we used two related procedures: 1) re-
moving all SNPs whose derived alleles are at low frequencies
(derived allele frequency [DAF], 0.15) and 2) subsampling
nSNPs at low frequencies (DAF , 0.15), such that SFS
distributions across all LS classes match each other. Before
subsampling, we calculated the fractions of these
low-frequency nSNPs (lfnSNPs) in all nSNPs for genes in
ten LS groups. The nSNPs in LS 10 group genes have
the lowest fraction of lfnSNPs. We thus kept lfnSNPs in
LS 10 group unchanged and subsampled lfnSNPs in the
rest of the LS groups. For each LS group 1–9, we computed
how many lfnSNPs (/%) should be removed in order to
make the final fraction of lfnSNPs equal to that of LS
10. Then we randomly purged /% of lfnSNPs from each

of LS groups 1–9. As a result, allele frequency spectra of
the subsampled nSNPs in all ten LS groups became similar
to each other (supplementary fig. S3, Supplementary Ma-
terial online). We also used two different DAF cutoffs
(,0.05 and ,0.20) to define lfnSNPs. The effect of sub-
sampling on final MKPRF results does not change depend-
ing on the exact values of the DAF cutoffs.

Li et al. (2008) found that results of MKPRF are sensitive
to the model, and the value of r used to estimate c values.
To get a sense of the robustness of c estimation, we reran
our analyses using hierarchical model (FIXED_VARIANCE 5
0) with all default parameters and also using nonhierarchical
model with the values of r set at 1, 4, and 16.

Results

Classifications of Human–Chimp Genes
We first classified human genes into ten groups based on
their LS (Cai, Woo, et al. 2006). Here, we considered the

FIG. 1.—Protein divergence rates (Ka and Ka/KS) as a function of LS. (A) Phylogenetic profiles of human protein-coding genes in ten LS groups.

Solid circles and open circles indicate the presence and absence of human genes in the corresponding species, respectively. Genes that are

present in all 11 species (i.e., LS 1 genes) show the profile like (vertically arranged); genes that are present in human

and chimpanzee and absent in the rest species (i.e., LS 10 genes) have the profile like (vertically arranged). LS levels are

labeled with circled numbers. Genes whose phylogenetic profiles do not match any of the ten given profiles were excluded from the analysis; otherwise,

they (such as, those with a profile like ) were excluded from the analysis. The numbers of genes in LS groups are given

in the parentheses. (B) Medians of divergence rates (pooled Ka, KS, and Ka/KS derived from the Applera divergence data [Bustamante et al. 2005]) for

ten LS groups. Error bars indicate 95% CIs calculated from the 10,000 bootstrap replications. For individual genes, the Ka and Ka/KS values vary widely

and significantly among different LS groups (v2 5 2024.91 and 1926.15, respectively, degrees of freedom [df]5 9, P,, 0.001 in both cases, KW test).

The difference in KS is much less substantial albeit significant among LS groups (v2 5 39.17, df 5 9, P 5 1.07 # 10$5, KW test). Ka and Ka/KS are

positively correlated with the LS values (Spearman’s q 5 0.507 and 0.503, respectively, P ,, 0.001 in both cases), whereas Ks shows no such

correlation (Spearman’s q 5 0.016, P 5 0.182).
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primate lineage containing human and chimpanzee in the
phylogeny of total 11 eukaryotic species (fig. 1A). We used
LS to quantify the extent to which orthologs of a human
gene are distributed in the species close to the primate lin-
eage. Human geneswhose orthologs are present in few spe-
cies closely related to human and chimp are more primate
lineage-specific than those genes whose orthologs are pres-
ent in more distantly distributed species. We only assessed
genes of ten LS categories that have nonpatchy distributions
(fig. 1A). The numbers of genes in the LS categories 1–10 are
737, 848, 355, 458, 1,377, 294, 361, 834, 219, and 1,817,
respectively.

We then classified human genes based on their PL, which
quantifies evolutionary age of genes in terms of the most
diverged lineage in which the homologs of those genes
can be detected using Blast (see Materials and Methods
and [Domazet-Loso et al. 2007]). As noted in Domazet-Loso
and Tautz (2008), genes that share a particular protein do-

main will have the same PL based on when this domain
emerged first, even though a particular gene may have
evolved later (e.g., due to gene duplication or exon shuf-
fling). Because a protein domain is usually linked to a certain
function, PL is used to trace the origin of this function, irre-
spectively of the further origin of paralogs. We classified
human genes into nine PL groups (Materials and Methods)
(fig. 2A). LS and PL measures two proprieties of phyloge-
netic distribution of genes—breadth and depth, which
are related to each other. Lineage-specific genes with high
LS levels necessarily have high PL levels and vice versa. In-
deed, the Spearman’s correlation coefficient between LS
and PL is 0.65, and it is highly significant (P ,, 0.001).

Finally, we identified genes that were present in human,
chimp, and yeast but that varied in their presence and ab-
sence in the ‘‘intermediate’’ lineages between human/chimp
and yeast (fig. 3A). We classified these genes into four
groups according to the number of GLs: (0) genes that have

FIG. 2.—Protein divergence rates (Ka and Ka/KS) as a function of PL. (A) Assignment of original phylostrata (obtained from [Domazet-Loso and

Tautz 2008]) into nine PL groups. (B) Median values of divergence rates (pooled Ka, KS, and Ka/KS derived from the Applera divergence data [Bustamante

et al. 2005]) for nine PL groups. Error bars indicate 95% CIs calculated from the 10,000 bootstrap replications. For individual genes, the Ka and Ka/KS

values vary widely and significantly among different PL groups (v2 5 1177.36 and 1120.65, respectively, degrees of freedom [df] 5 8, P ,, 0.001 in

both cases, KW test). The difference in KS is much less substantial albeit significant among PL groups (v2 5 126.23, df 5 8, P ,, 0.001, KW test). Both

Ka and Ka/KS are positively correlated with PL (Spearman’s q 5 0.215 and 0.206, respectively, P ,, 0.001 in both cases), whereas KS shows much

weaker correlation (Spearman’s q 5 0.064, P 5 1.19 # 10$13).
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never been lost, (1) genes that have been lost once, (2)
twice, and (3) three times or more (fig. 3A). These genes
belong to the same PL group but vary in the propensity
for loss. In such a setting, all human/chimp genes are suc-
cessfully detected in the distantly related species (i.e., yeast),
so it is much less likely that the patterns of presence or ab-
sence of genes among less divergent intermediate species
are due to the failure of detecting genes by Blast.

Note that in every case, we retained only those human
genes that have clear orthologs present in the chimpanzee
genome. In this way, for all genes in the study, the rates of
molecular evolution are estimated through human–chimp
comparison in a consistent and reliable manner.

Higher Rates of Protein Evolution in Lineage-Specific
Genes
We use the nonsynonymous substitution rate (Ka) and the
ratio of nonsynonymous to synonymous substitution rate
(Ka/KS) between the human and chimpanzee orthologs to
measure the rate of protein evolution. Ka and KS values
for the genes in each group (LS, PL, or GL) were calculated
in two ways. First, we calculated Ka and KS values for the
individual genes and estimated the median value within

each group. Second, we concatenated the sequences of
all genes in the same group and calculated pooled Ka

and KS values for each group in this manner. Two ap-
proaches gave essentially identical values. For brevity, we re-
port the results of the pooled Ka and KS, which are based on
the divergence data from the study of Bustamante et al.
(2005), unless stated otherwise.

The Ka and Ka/KS values vary significantly among different
LS, PL, and GL groups (Kruskal–Wallis [KW] test, P% 0.001 in
all cases) (figs. 1B, 2B, and 3B). Ka and Ka/KS are positively
correlated with the LS and PL and negatively with GL values
(Spearman’s r 5 0.503 and 0.507 [LS] and r 5 0.215 and
0.206 [PL] for Ka and KS, respectively, P , 0.001), whereas
Ks shows either no correlation (LS and GL, Spearman’s P .
0.05) or significant but very weak correlation (PL, Spearman’s
q5 0.064, P5 1.19# 10$13). Given the fact that chimpan-
zees are the most closely related species to humans and di-
vergence between human–chimp ortholog pairs may be
extremely low, it is possible that the low values of Ka and
KS for some genes may just be an artifact of the choice
of species to do the comparison. To eliminate the concern,
we recomputed Ka and KS with human–macaque ortholog
pairs. The sequences of the corresponding macaque

FIG. 3.—Protein divergence rates (Ka and Ka/KS) as a function of number of GL. (A) Phylogenetic profiles of human genes that are present in

human, chimpanzee, and yeast but vary in their presence and absence intermediate species (such as, mouse, cow, and chicken). Same notation is used

as in figure 1. The number of GLs is counted in species between human and yeast. (B) Median values of divergence rates (pooled Ka, KS, and Ka/KS

derived from the Applera divergence data [Bustamante et al. 2005]) for groups of genes whose loss counts are 0, 1, 2, and !3. Error bars indicate 95%

CIs calculated from the 10,000 bootstrap replications. For individual genes, the Ka and Ka/KS values vary marginally significantly among different GL

groups (v2 5 16.04 and 15.85, respectively, degrees of freedom [df] 5 3, P 5 0.001 in both cases, KW test). The difference in KS is not significant

among GL groups (v2 5 0.55, df 5 3, P 5 0.908, KW test). Both Ka and Ka/KS are positively correlated with GL (Spearman’s q 5 0.068 and 0.067,

respectively, P , 0.001 in both cases), whereas KS shows no correlation (Spearman’s q 5 0.001, P 5 0.939).
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orthologs were again obtained from Ensembl database
(Birney et al. 2006; Hubbard et al. 2007). We obtained sim-
ilar result as above (supplementary fig. S2, Supplementary
Material online). These results are consistent with previous
reports in humans or species in other domains (Krylov
et al. 2003; Alba and Castresana 2005; Cai, Woo, et al.
2006).

Robustness to Potential Inability to Detect Fast-
Evolving Genes in Distant Lineages
Inability of Blast to detect orthologs of fast-evolving genes
in distant lineages can in principle contribute to the inverse
relationship between the protein-divergence rate and LS (or
PL) (Elhaik et al. 2006). This problem is unlikely to be severe,
as simulations of the evolution of protein sequences with
the same rates and among-site heterogeneity as those es-
timated from real mammalian protein-coding genes dem-
onstrated that most functional genes could be detected
by Blast in comparisons of even very distantly related
genomes (e.g., fungi or plants vs. mammals) (Alba and
Castresana 2007). The simulated procedure is exactly the
same as the one used for the determination of PL values
and should have as much sensitivity as the one employed
in the LS statistic. Furthermore, the GL statistic, which
measures the rate of GL, should be the least susceptible
to this problem. This is because in the case of GL, proteins
are first detected between the most distant lineages (hu-
mans and yeast) and thus are unlikely to be missed in
the comparisons of more closely related species. Finally,
in our analyses, the strongest signal comes from the com-
parisons of fairly young genes (e.g., high LS groups, fig. 1)
and thus should be more robust to this problem.

We also conducted an additional test. We divided all
genes into two groups: the slower evolving group (Ka %
0.007) and the faster evolving half (Ka . 0.007). The cutoff
Ka 5 0.007 is the 72th percentile of ordered Ka values,
which was chosen to split genes into two groups in such
a way that each group contains enough (.30) genes in each
of 10 LS or 9 PL classes. The positive correlation between Ka/
KS and LS and PL values is evident in both data sets (P ,
0.001 in both cases, fig. 4). This demonstrates that the de-
tected pattern is not due to the unusual behavior of the fast-
est evolving genes, which are the likeliest genes to go
undetected in distant comparisons.

Overall, we believe it is highly unlikely that the problem
of detecting proteins in distantly related lineages is suffi-
ciently severe to invalidate the described analyses. Note
that the slow rate of protein evolution is evident in the
older and more broadly distributed genes independently
of whether we classify genes using the LS, PL, or GL statis-
tics. All the analyses described below can be reproduced us-
ing any of the statistics. In the rest of the manuscript, for
brevity, we only report the results derived using the LS
classification.

Robustness to the Variation in the Levels of Gene
Expression
The level of gene expression is strongly anticorrelated with
the protein divergence rate (Drummond et al. 2006; Pal
et al. 2006). It is therefore important to determine whether
the correlation between Ka or Ka/KS and LS categories is due
to the variation in expression levels of genes of different LS
categories.

We consider three expression-related measures across all
tissues: average expression (aveExp), the maximum expression
(maxExp), and the heterogeneity of expression (hetExp) (see
Materials andMethods). As expected, aveExp is anticorrelated
with Ka/KS (Spearman’s q 5 $0.256, P ,, 0.001) and Ka

(Spearman’s q 5 $0.241, P ,, 0.001). The genes in higher
LS categories have lower levels of expression (Spearman’s q5
$0.230, P ,, 0.001). After controlling for expression level,
the correlations between LS and Ka/KS (or Ka) remain positive
and highly significant [corr(Ka/KS,LSjaveExp) 5 0.238 and
corr(Ka,LSjaveExp)5 0.222, both P,, 0.001, Spearman par-
tial correlation test]. Thus, correlation between LS and the rate
of protein evolution is not entirely driven by lower expression
levels of high LS genes. The other two variables, maxExp and
hetExp, have similar relationships with LS and Ka/KS as aveExp
does, which is not unexpected given the strong correlations
between both maxExp and hetExp with aveExp (Spearman’s
q 5 0.772 and 0.294, respectively [both P ,, 0.001]).

We conducted a linear multiple regression in the forward
stepwise manner to examine the contributions of LS,
aveExp, maxExp, and hetExp on the variation in log(Ka).
The regression model defines log(Ka) as a function of all cor-
responding variables (XLS, XaveE, XmaxE, and XhetE):

LogðKaÞ5 b0 þ bLSXLS þ baveEXaveE

þ bmaxEXmaxE þ bhetEXhetE:

Table 1 gives the result of the modeling procedure. The
final model gives a global R2 of 0.131 (P , 0.001), that is,
more than 13%of the variation in log(Ka) is explained by this
model. During the construction of the final model, two
predictors most highly correlated with log(Ka)—LS and
aveExp—were kept. The remaining variables, which have
minor roles in overall regression, were excluded. The stan-
dardized coefficients were examined to determine the rela-
tive importance of the significant predictors. LS contributes
more to the model than does aveExp, as shown by its larger
absolute standardized coefficient 0.350 and t statistic of
20.712, compared with values of 0.041 and 2.414 for
aveExp. This analysis suggests that LS is the most relevant
predictor of the rate of protein divergence.

Weaker Purifying Selection in Lineage-Specific
Genes
The slower protein evolution of older and more broadly dis-
tributed genes is most likely due to stronger purifying
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selection acting on these genes. Indications for this should
include a lower density of nSNPs and lower frequencies of
derived alleles of these nSNPs. We use human SNP data and
human/chimp divergence to investigate this prediction.

We analyze three SNP data sets: 1) SNPs in genes rese-
quenced by Applera (Bustamante et al. 2005), 2) SNPs in
NCBI dbSNP build 126, and 3) Perlegen SNPs (Hinds et al.
2005). Coding SNPs were split into sSNPs and nSNPs. For
each LS category, we computed A* (the number of nSNP
per nonsynonymous site) and S* (the number of sSNP per
synonymous site) (see Materials and Methods). Figure 5
shows the results derived from all three data sets. None

of the conclusions related to the assessment of the strength
of purifying selection (measured by using the ratio A*/S*)
change qualitatively depending on the investigated SNP
data sets. Below we only describe Applera results.

First, we test whether older genes are subject to stronger
purifying selection in humans. Values of A* and A*/S* cor-
relate strongly and positively with the value of LS (Spear-
man’s q 5 0.881 and 0.874, P , 0.005 and 0.001,
respectively). The values of A*/S* increase almost 2-fold
(0.31–0.57) from the lowest to the highest values of LS
(fig. 5A). In addition, DAFs of SNPs in the genes from the
lower LS groups are skewed toward rare alleles relative to

FIG. 4.—Median Ka/KS as a function of LS and PL for slowly and fast-evolving genes. (A) Median Ka/KS for ten LS groups; (B) Median Ka/KS for nine

PL groups. Genes are grouped into the slowly (Ka % 0.007) and fast (Ka . 0.007)-evolving ones.

Table 1
Result of the Linear Regression to Model the Value of log(Ka) Based on Its Relationship to LS and Gene Expression

Included

variables

Overall Contribution

of Variable (R2)a

Incremental

Contribution

of Variable (DR2)

Order of

Entryb

Unstandardized

coefficient (B) 6

standard error

Standardized

Coefficient (b) tc P

Constant — — $5.929 ± 0.097 — $61.293 ,0.0001

LS 0.129 0.129 1 0.132 ± 0.006 0.350 20.712 ,0.0001

aveExp 0.006 0.002 2 $0.301 ± 0.125 $0.041 $2.414 0.016

Excluded variables

hetExp 0.005 3 $0.015 $0.858 .0.1

maxExp 0.006 4 $0.008 $0.306 .0.1

a R2 is the proportion of variation in the dependent variable (log(Ka)) explained by the regression model constructed from the individual variable, indicating the independent
contribution of each variable to explain the global variance of log(Ka).

b Order of variables entered into the model at each step.
c The t statistic indicates the relative importance of each variable in the model.
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that of higher LS genes (fig. 6). Specifically, the proportion of
rare nSNPs (DAF, 0.15) is negatively correlated with LS val-
ues (Spearman’s q 5 $0.794, P , 0.01), whereas, in con-
trast, the proportion of rare sSNPs are not correlated with
the LS values (P5 0.45, fig. 6). The proportion of rare nSNPs
is significantly greater than the proportion of rare sSNPs for
the LS groups 1 through 5 (P, 0.01 for all tests, G-test with
Bonferroni correction) but not for the LS groups 6 through
10 (P. 0.05 for all tests,G-test). We also tried different DAF
cutoffs (0.05, 0.1, and 0.2) as well as investigated the pat-
tern derived from minor allele frequencies (MAFs). Regard-
less of the different cutoffs of DAF and the use of derived or
MAF, results are similar (supplementary figs. S4 and S5,
SupplementaryMaterial online). Thus, compared with youn-

ger genes, older genes contain fewer nSNPs per site, and the
frequencies of derived or minor alleles of these SNPs are
lower. These results indicate that younger genes are subject
to weaker purifying selection at the protein-coding level.

Robustness Tests for Polymorphism Patterns
We conducted several tests to demonstrate that the rela-
tionship between the proportion of A*/S* and LS cannot
be explained entirely by a number of confounding factors.
Specifically, we demonstrated that stronger purifying selec-
tion acting on older genes can be detected within subsets of
the data defined by 1)whether a gene belongs to a particular
functional (GO) gene group (supplementary table S1, Sup-
plementary Material online), 2) whether a gene has

FIG. 5.—Polymorphism rates (A*, S*, and A*/S*) as a function of LS. Results are derived from three data sets. (A) Applera SNPs (Bustamante et al.

2005). Spearman’s q 5 0.964 and 0.952 (both P , 0.001), for the correlation of LS levels with A* and A*/S*, respectively. (B) Validated SNPs in dbSNP

126. Spearman’s q5 0.803 and 0.891 (P, 0.001 and 0.005), for the correlation of LS values with A* and A*/S*, respectively. (C ) Perlegen SNPs (Hinds

et al. 2005). Spearman’s q 5 0.952 and 0.830 (P , 0.001 and P 5 0.006), for the correlation of LS values with A* and A*/S*, respectively. Error bars

indicate 95% CIs calculated from the 10,000 bootstrap replications.
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a duplicate elsewhere in the human genome (supplemen-
tary table S2, Supplementary Material online), 3) whether
SNPs are due to C to T transitions at CpG sites (supplemen-
tary table S3, Supplementary Material online), and 4)
whether a gene resides in a genomic region of high or
low GC content (supplementary table S4, Supplementary
Material online) (for details, see Materials and Methods).
The correlation between A*/S* and LS is unlikely due to dif-
ferent LS groups containing peculiar assemblages of genes
defined by function, presence of a duplicate, number of
CpG sites, or GC content.

We also verified that variation in levels of purifying selec-
tion in genes of different LS categories is not due to the
variation in the level of gene expression, although A*/S*
is strongly influenced by the expression pattern and breadth
(Osada 2007). The partial correlation between A*/S* and LS
is positive and significant after controlling for the different
average expression levels of genes in different LS categories
(i.e., corr(A*/S*,LSjaveExp) 5 0.830, P , 0.001, partial
Spearman correlation test with Applera data).

Rate of Adaptive Evolution in Lineage-Specific
Genes
The restricted phylogenetic distribution of young genes im-
plies that many of them are probably involved in lineage-
specific adaptive processes. So, in addition to experiencing
weaker purifying selection, young genes might be expected
to experience higher rates of positive selection. To test this
conjecture, we first used the method of Eyre-Walker and
Keightley (2009) implemented in DoFE v2.1 to estimate
xA for each LS categories. The method of Eyre-Walker
and Keightley (2009) attempts to correct for to the problem
existing in previous methods (e.g., those of Fay et al. [2001];
Smith and Eyre-Walker [2002]; Welch [2006]) that may give
downwardly biased estimation if there are slightly deleteri-
ous mutations that inflate polymorphism relative to diver-
gence (Crow and Kimura 1970; McDonald and Kreitman

1991; Eyre-Walker and Keightley 1999; Eyre-Walker
2002; Eyre-Walker et al. 2002). This method also estimates
the DFEs of new deleterious mutations from the polymor-
phisms data and then uses the inferred DFE to predict
the numbers of substitutions originating from neutral and
slightly deleterious mutations between two species.

Using Applera polymorphism data and average allele
frequencies across all African American and European
American individuals, we estimated values of xA for ten
LS categories, 0.0397, 0.0756, $0.0485, 0.0093, 0.0833,
$0.0471, $0.031, 0.0155, $0.0756, and 0.1372. Because
xA values and the LS values do not correlated with each
other (P 5 0.865, Spearman correlation test), these results
provide no evidence that young genes experience a higher
rate of adaptive nucleotide substitutions.

The DFEs of new neutral and deleterious mutations are
simultaneously inferred by DoFE. We compared the esti-
mated fractions of mutations in different Nes ranges among
LS categories (fig. 7). There is a wide range of fractions of
amino acid-changing mutations that behave as effectively
neutral (0 , Nes , 1) among LS categories, ranging from
15.7% for LS 2 to 52.3% for LS 9. The fraction of effec-
tively neutral mutations is correlated with LS significantly
(Kendall’s s 5 0.73, P , 0.005), that is, the younger the
genes the more effectively neutral mutations they have pro-
portionally. The combined fractions of mutations with Nes
ranges 1–10 and 10–100 are for slightly deleterious muta-
tions. The fraction is negatively correlated with LS (r 5 $
0.76, P 5 0.017, Pearson correlation test after excluding
outlier data point at LS 5) (fig. 7 and supplementary fig.
S6, Supplementary Material online). This is consistent with
previous results that old genes have proportionally more
slightly deleterious mutations.

We also use the MKPRF analysis (Sawyer and Hartl 1992;
Bustamante et al. 2002, 2005) to assess the proportion of
genes showing evidence of positive selection in each LS cat-
egories. First, we ran MKPRF with a nonhierarchical model

FIG. 6.—Portions of SNPs with low-frequency derived allele (DAF , 0.15) in genes of ten LS groups. Results derived from Applera data for both

nSNPs and sSNPs are shown here.
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and a SD (r 5 8) of Gaussian prior, using exactly the same
settings as in Bustamante et al. (2005). For each gene, we
estimated the value of population-effective selection coeffi-
cient, c (52Nes, where Ne is the effective population size and
s is the selection coefficient in aWright–Fisher genic selection
model). The values of c vary significantly among genes of dif-
ferent LS groups (P, 0.001, KW test) and are positively cor-
related with LS values (Spearman’s q 5 0.706, P , 0.001).
We also obtained the 95% CIs of c. If a gene has its 95%
CIs of c completely above 0, the gene appears to have been
evolving under positive selection. On the other hand, if the
95%CIs of c are completely below 0, the gene appears to be
under negative selection and have a high proportion of
weakly deleterious nonsynonymous polymorphisms. We
found that the proportion of positively selected genes
(fc.0) increases with the increment of LS values (Spearman’s
q 5 0.927, P , 0.001; Kendall’s s 5 0.778, P , 0.001)
(fig. 8A, left panel), and the proportion of negatively selected
genes (fc,0) decreases with the increment of LS
values (Spearman’s q 5 $0.924, P , 0.001; Kendall’s
s 5 $0.778, P , 0.001) (fig. 8A, right panel). We also cal-
culated the ratios of the numbers of positively selected and
negatively selected genes to the numbers of neutrally evolv-
ing genes (!f c.0 and !f c,0, respectively). Similar to fc.0 and
fc,0, !f c.0 correlates positively with the LS values (Spearman’s
q 5 0.927; P , 0.001; Kendall’s s 5 $0.778, P , 0.001)
(fig. 8A, left panel), and !f c,0 correlates negatively with
the LS values (Spearman’s q 5 $0.915; Kendall’s
s 5 $0.778, P , 0.001) (fig. 8A, right panel). Note that,
as in Bustamante et al. (2005), we focused our analysis only
on the potentially informative loci that contain enough poly-
morphism and/or divergence events to have a chance of

showing signals of selection. Specifically, we included infor-
mative loci with Pn þ Dn ! 2 (Bustamante et al. 2005). We
also carried out MKPRF analysis in two ways: either analyzing
all genes together or analyzing genes from each LS group
separately. The results remain virtually unchanged. Therefore,
MKPRF analysis with full Applera SNPs suggested that youn-
ger genes experience a higher rate of adaptive evolution.

Slightly deleterious SNPs lead to an underestimation of
the rate of adaptive evolution because they make a substan-
tial contribution to polymorphism but fix at a much lower
rate compared with neutral polymorphisms (Crow and
Kimura 1970; Eyre-Walker and Keightley 1999; Eyre-Walker
2002; Eyre-Walker et al. 2002). From allele frequency anal-
ysis of nSNPs and the MKPRF analysis, we know that genes
from lower LS groups have more slightly deleterious poly-
morphisms on average. This is indicated both by the higher
proportion of rare nSNPs (fig. 6) and by the higher propor-
tion of genes for which the MKPRF estimate of c is negative
for the low LS genes. Unlike the DoFE method of Eyre-
Walker and Keightley (2009), in which the effect of slightly
deleterious mutations are attempted to be controlled,
MKPRF analysis per se does not control for this effect. Thus,
the finding of a smaller proportion of genes experiencing
positive selection in low LS group genes might be an artifact
of the larger proportion of slightly deleterious polymor-
phisms in these genes.

We try to rule out this possibility using two approaches: 1)
removing SNPs of low frequencies (Fay et al. 2001) prior to
the analysis and 2) subsampling nSNPs to ensure that nSNPs
in different LS groups have same frequency distribution and
thus have the same bias (see Materials and Methods). The
first procedure attempts to limit the effect of slightly

FIG. 7.—Fractions of mutations in Nes range for genes in different LS classes.
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deleterious SNPs by focusing on more frequent SNPs under
the assumption that slightly deleterious SNPs are unlikely to
reach intermediate frequencies (Fay et al. 2001). After re-
moving the SNPs at less than 15% frequency and rerunning

the MKPRF procedure, the positive correlation between LS
and portion of genes under positive selection remains virtu-
ally unchanged (fig. 8B, Spearman corr(LS, fc.0)5 0.93, P,
0.0001, and corr(LS, !f c.0)5 0.94, P, 0.0001). The second,

FIG. 8.—Portions of genes under positive selection and negative selection as a function of LS level. A gene is considered to be under positive (or

negative) selection if the mean posterior probability of c is positive (or negative) and the 95% Bayesian credibility intervals do not overlap 0. The value of

c is estimated using MKPRF method with nonhierarchical model and a single Gaussian prior of c with a mean of 0 and the SD of 8 (see Materials and

Methods). Each row contains two panels: Left panel shows fc.0 (red bars) and !f c.0 (gray bars), fractions of genes with 95% CI of c completely above

0 and right panel shows fc,0 (red bars) and !f c,0 (gray bars), fractions of genes with 95% CI of c completely below 0. The MKPRF analysis was run with

the nonhierarchical model and a SD (r 5 8) of Gaussian prior of c, replicating the settings used by Bustamante et al. (2005). The results were derived

from (A) all Applera SNPs (Spearman corr(LS, fc.0) 5 0.88, P 5 0.0007; corr(LS, !f c.0) 5 0.89, P 5 0.001; and corr(LS, fc,0) 5 $0.91, P 5 0.0005;

corr(LS, !f c,0) 5 $0.92, P 5 0.005). (B) Applera SNPs with DAF ! 0.15 (Spearman corr(LS, fc.0) 5 0.93, P , 0.0001; corr(LS, !f c.0) 5 0.94, P , 0.0001;

and corr(LS, fc,0) 5 $0.66, P 5 0.04; corr(LS, !f c,0) 5 $0.85, P 5 0.004). (C) Applera SNPs subsampled to ensure an equal portion of slightly

deleterious polymorphism in all LS groups (Spearman corr(LS, fc.0) 5 0.94, P , 0.0001; corr(LS, !f c.0) 5 0.95, P , 0.0001; and corr(LS, fc,0) 5 0.56,

P 5 0.09; corr(LS, !f c,0) 5 0.37, P 5 0.30).
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subsampling procedure attempts to subsample the nSNPs
such that the DFE of all of them is similar and is affected
by the slightly deleterious SNPs both as little as possible,
but more importantly, to the same extent across all the
LS groups. We subsampled the nSNPs in all groups using
the distribution in the LS 10 group. After subsampling, all
LS groups have indistinguishably similar proportions of
slightly deleterious polymorphisms (P ; 1, v2 test, supple-
mentary fig. S1, Supplementary Material online). Note also
that the proportions of rare SNPs are not different in the syn-
onymous and nonsynonymous classes in the LS 10 group
genes (P 5 0.517, G-test) suggesting that the proportion
of the slightly deleterious nSNPs in the LS 10 group genes
is negligible. Therefore, subsampling should sharply reduce
the influence of slightly deleterious nSNPs on the analysis
overall. The proportion of genes containing a detectable
number of slightly deleterious nSNPs no longer decreases
with the increment of LS when MKPRF is carried out with
the subsampled SNPs (fig. 8C). Importantly, the proportion
of genes under positive selection remains higher in the high-
er LS groups (fig. 8C, Spearman corr(LS, fc.0) 5 0.94, P ,
0.0001, and corr(LS, !f c.0) 5 0.95, P , 0.0001).

Results of the MKPRF analysis might change depending
on the prior and the model used in the analysis (Li et al.
2008). To explore these effects, we reran theMKPRF analysis
using the nonhierarchical model with three additional r val-
ues (1, 4, and 16). We found that although the absolute val-
ues of portion of genes in each age groups change, the
positive correlation between LS and fc.0 (or !f c.0) remains,
especially in the cases of high r values (e.g., r5 16, Spear-
man corr(LS, fc.0)5 0.93, P5 0.0001, and corr(LS, !f c.0)5
0.88, P 5 0.008) (supplementary fig. S7, Supplementary
Material online). We also ran MKPRF analysis using the hi-
erarchical model (see Materials and Methods). The positive
correlation between LS and fc.0 (or !f c.0) is weaker in this
case but remains significant after removing rare frequent
SNPs (P 5 0.004, Spearman correlation test) and after
the subsampling (P 5 0.003, Spearman correlation test)
(supplementary fig. S8, Supplementary Material online).
Overall, the MKPRF results do suggest that younger genes
tend to experience positive selection more frequently, al-
though to a modest degree. The faster evolution of younger
genes appears to be attributable almost entirely to the
weaker purifying selection acting on these genes.

Discussion
Genes in the human genome vary in their evolutionary age.
A considerable proportion of human genes (e.g., ;10%,
even only considering ‘‘strict orthologs’’ with unambiguous
one-to-one relationships [Berglund et al. 2008]) can be de-
tected in the yeast genome, implying that they originated
before the common ancestor of human and yeast diverged
more than 1.5 billion years ago. On the other hand, human

genome contains a small fraction of genes found in only one
or a few closely related species, such as, mammals- or pri-
mates-specific genes (e.g., morpheus [Johnson et al. 2001]
and SPANX [Kouprina et al. 2004]). Recent bioinformatics
analysis revealed 270 primate-specific and 364 mammal-
specific genes; some of them may have originated de novo
(Toll-Riera et al. 2009; Toll-Riera, Castelo, et al. 2009). In-
deed, there is increasing experimental evidence for emer-
gence of new genes from noncoding mammalian
genomic regions (Heinen et al. 2009; Knowles and McLy-
saght 2009).

We have classified human/chimp genes based on the
breadth and the depth of their phylogenetic distributions
in 11 eukaryotic genomes using three related but distinct
metrics that quantify the breadth (LS), the depth (PL), and
the rate of GL (Krylov et al. 2003; Alba and Castresana
2005; Cai, Woo, et al. 2006). We confirmed that younger
and less broadly distributed proteins evolved at distinctly
higher divergence rates than older and broadly distributed
genes (Domazet-Loso and Tautz 2003; Daubin and Ochman
2004; Alba and Castresana 2005; Wang et al. 2005; Cai,
Woo, et al. 2006; Kuo and Kissinger 2008). This pattern
is very pronounced: for instance, the correlation coefficient
between one of the measures of the phylogenetic breadth
and depth (LS) and the rate of protein evolution between
humans and chimps (Ka or Ka/KS) is higher than 0.5. Another
illustration of the strength of this signal is that human/chimp
genes that cannot be detected in the mouse genome and
beyond have been evolving approximately 4 times faster be-
tween humans and chimps than the human/chimp genes
whose presence can be detected all the way to yeast. In ad-
dition, this effect is robust to the variation in levels of gene
expression, existence of paralogs, relative abundance of
CpG sites, GC content of genomic regions, and classes of
gene functions (i.e., GO annotations). The age of a gene
or the breadth of its phylogenetic distribution is thus one
of the best predictors of its rate of evolution (Alba and
Castresana 2005; Cai, Woo, et al. 2006).

The fast evolution of genes that have a restricted phylo-
genetic distribution raises a possibility that even old and
broadly distributed but fast-evolving genes might be mis-
classified as young and lineage specific due to our inability
to detect their orthologs in distant species (Elhaik et al.
2006). Fortunately, this entirely reasonable concern appears
not to generate severe ascertainment problems in practice.
Alba and Castresana (2007) simulated the evolution of pro-
tein genes using the same overall evolutionary rates and the
same among-site rate heterogeneity as observed in mam-
malian genes. They found that Blast could detect practically
all genes in this analysis all the way to the level of divergence
between yeast and mammals. This is probably because even
fast-evolving proteins tend to contain some conserved seg-
ments. These conserved segments, even if they are fairly
short, can still be detected by the local alignment algorithm
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of Blast. One of our phylogenetic measures, PL, exclusively
dependents on Blast to determine gene age and should be
reliable based on the simulations of Alba and Castresana
(2007). One of the other measures, LS, should be at least
as sensitive as PL and thus should not be affected severely
either.We provided two additional lines of evidence that our
results are not artifactual. First, we split the genes into two
groups based on their rate of evolution between humans
and chimps. We were able to detect faster evolution of
younger and more narrowly distributed genes within each
group and most importantly within the group of slowly
evolving genes. The second line of evidence is based on
the use of the number of GLmeasure. This measure classifies
genes based on the detected number of losses in the phy-
logeny for genes that can be detected in the most distant
taxa, in our case human/chimp and yeast. In the case of
GL, all human/chimp genes can be detected in yeast making
it very unlikely that the apparent absence of these genes in
much closer related lineages was due to the failure of
detection and not due to their true absence.

The faster protein evolution of younger or more narrowly
distributed genes must be due to changes in the way natural
selection operates on mutations in these genes. It is not due
to the difference of mutation rates because the patterns of
evolution at synonymous sites in younger genes are indistin-
guishable from those in older genes. In addition, these pat-
terns are robust to the variation in GC content across the
human/chimp genomes, which in principle could generate
spurious signals. But what are these changes in the natural
selection? There are two nonmutually exclusive possibilities:
1) younger genes can be subject to weaker selective con-
straint (weaker purifying selection) and/or 2) younger genes
are subject to positive selection more frequently.

We have used genome-wide SNP data in humans and the
divergence data between human and chimp to demonstrate
that at least the first possibility is true. Younger and less
broadly distributed genes are subject to substantially less se-
lective constraint. The weaker constraint is evident in the
higher density and higher population frequencies of nSNPs
in younger genes. In fact, nSNPs in the youngest genes
segregate at the same frequencies as sSNPs, whereas the
frequency of nSNPs is substantially reduced in the older
genes. These results are robust to the use of any of the three
SNP data sets that we used, namely Applera, dbSNP, and
Perlegen data sets. In addition, we observed the clear anti-
correlation between the fraction of nearly neutral mutations
and gene age, that is, the younger genes are, the higher pro-
portion of new mutations in genes are nearly neutral. The
pattern is strong as the increase of the proportions from
old genes to youngest genes can be as high as 4-fold (see
Results). One reason for the weaker selective constraint in
younger and less broadly distributed genes is that these
genes might be less functionally important or at least less
consistently important than older and more broadly distrib-

uted genes. Consider a gene that can be found in the ge-
nomes of yeast and humans and in every taxon in
between. It is clear that such a gene is not only old but also
has a very low probability of loss due to inactivating muta-
tions. This implies that inactivating mutations in such genes
are consistently strongly deleterious most likely because such
genes perform important or even essential functions. In such
genes, as surmised byWilson et al. (1977), even subtle amino
acid mutations would tend to lead to sufficiently strong del-
eterious effects to be noticed by natural selection. In con-
trast, a substantial proportion of younger genes and
especially geneswith patchy phylogenetic distributions either
have been lost in some lineages or at least we have no ev-
idence that they cannot be lost. Indeed, given that genes are
formed all the time by a variety of mechanisms while the
number of genes within genomes do not continuously in-
crease, we can surmise that a substantial proportion of youn-
ger genes are destined to be lost over relatively short periods
of time (see also Wolf et al. 2009). This means that for many
of the younger genes even null mutations are not always
strongly deleterious. It is not surprising then that such genes
show weaker selective constraint against more subtle amino
acid-changing mutations. We emphasize that the gene age
effect should be taken as a prior in studying the fitness effect
of mutations of genes. Our analysis has been restricted to
human genes; however, the patterns we found should be
applicable to other species, especially, given that a general
birth-and-death model has been found applicable to genes
in multiple lineages (Wolf et al. 2009).

We used two approaches (DoFE [Eyre-Walker and
Keightley 2009] and MKPRF [Sawyer and Hartl 1992;
Bustamante et al. 2002, 2005]) to test the second possibility,
namely that younger genes experience a higher rate of pos-
itive selection. Using DoFE, we estimated xA for each LS
class of genes. We detected no correlation between LS
and corresponding xA for genes in LS classes, providing
no evidence of higher prevalence positive selection in youn-
ger genes. However, using MKPRF, we did find some
evidence that there were proportionally more genes show-
ing signs of positive selection (c. 0) in younger age classes.
The proportion of genes with a positive c goes from;1–2%
in the oldest genes to;6–12% in the more lineage-specific
genes (LS groups 7 through 10). Because this result can be
biased by the higher prevalence of slightly deleterious nSNPs
in the older genes, we reran the analysis either after elim-
inating rare (,15%) SNPs (Fay et al. 2001) or after subsam-
pling nSNPs in different LS categories to match that in the
youngest and the least biased gene category. Furthermore,
MKPRF results might be affected by the choice of a different
prior and the use of different models (hierarchical vs. non-
hierarchical) (Li et al. 2008). In all these additional analyses,
MKPRF results continue to suggest that a higher proportion
of younger genes exhibit signs of positive selection. The in-
consistent results produced by twomethods emphasize that
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the evidence for higher rate of adaptive evolution among
younger genes is tentative. Among other things, the diffi-
culty of detecting the difference could be due to a weak ge-
nome-wide signal of positive selection associated with
human protein-coding genes in general.

Nevertheless the higher rate of adaptation in the young
genes might be consistent with the ideas that lineage-
specific genes may drive morphological specification, en-
abling organisms to adapt to changing conditions (Khalturin
et al. 2009) and also with the observation that young genes
tend to be less functionally important. Fisher’s geometric
models of adaptation predicts that small phenotypic
changes should have a higher probability of being advanta-
geous (Fisher 1939) (but see [Kimura 1983; Orr 2002]). If
mutations in younger genes tend to have more subtle phe-
notypic effects, then such effects would be both less likely to
be deleterious and more likely to be adaptive. In this way,
older, indispensable proteins would form the conserved, an-
cient, unchanging core of functionality of the cell and the
organism, whereas the newly added and patchily distributed
genes would not only contribute to genic and functional
diversity among lineages directly but also disproportionately
underlie their continuous adaptation to environmental
changes. Furthermore, if adaptation preferentially takes
place in young and lineage-specific genes while deleterious
mutations preferentially land in ancient and shared genes,
then the ways organisms fail would bear more resemblance
with each other than the ways in which they adapt. The case
in point is that most human genes with known disease-
causing mutations do tend to be old (Domazet-Loso and
Tautz 2008; Cai et al. 2009). This is good news for the in-
vestigation of human disease through the investigation of
even distantly related animal models.

Supplementary Material
Supplementary figures S1–S8 and tables S1–S4 are available
at Genome Biology and Evolution online (http://www
.oxfordjournals.org/our_journals/gbe/).
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