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Research

Genome-wide signals of positive selection in human
evolution
David Enard,1 Philipp W. Messer, and Dmitri A. Petrov1

Department of Biology, Stanford University, Stanford, California 94305, USA

The role of positive selection in human evolution remains controversial. On the one hand, scans for positive selection have
identified hundreds of candidate loci, and the genome-wide patterns of polymorphism show signatures consistent with
frequent positive selection. On the other hand, recent studies have argued that many of the candidate loci are false
positives and that most genome-wide signatures of adaptation are in fact due to reduction of neutral diversity by linked
deleterious mutations, known as background selection. Here we analyze human polymorphism data from the 1000
Genomes Project and detect signatures of positive selection once we correct for the effects of background selection. We
show that levels of neutral polymorphism are lower near amino acid substitutions, with the strongest reduction observed
specifically near functionally consequential amino acid substitutions. Furthermore, amino acid substitutions are associ-
ated with signatures of recent adaptation that should not be generated by background selection, such as unusually long
and frequent haplotypes and specific distortions in the site frequency spectrum. We use forward simulations to argue that
the observed signatures require a high rate of strongly adaptive substitutions near amino acid changes. We further
demonstrate that the observed signatures of positive selection correlate better with the presence of regulatory sequences,
as predicted by the ENCODE Project Consortium, than with the positions of amino acid substitutions. Our results suggest
that adaptation was frequent in human evolution and provide support for the hypothesis of King and Wilson that
adaptive divergence is primarily driven by regulatory changes.

[Supplemental material is available for this article.]

The rate and patterns of positive selection are of fundamental

interest for the study of human evolution. Population genomic

studies should, in principle, allow us to quantify positive selec-

tion from its expected signatures in sequence polymorphism and

divergence data. Surprisingly, despite the sequencing of thou-

sands of human genomes (The 1000 Genomes Project Consor-

tium 2012) and the availability of whole-genome sequences of

closely related species, the extent to which adaptation has left

identifiable signatures in the patterns of polymorphism in

the human genome remains highly controversial (Akey 2009;

Hernandez et al. 2011).

On the one hand, recent studies have identified a large

number of loci showing signatures of recent selective sweeps

(Voight et al. 2006; Sabeti et al. 2007; Williamson et al. 2007; Pickrell

et al. 2009; Grossman et al. 2013), and McDonald-Kreitman (MK)

analyses inferred that ;10%–20% of amino acid changes have

been adaptive in human evolution (Boyko et al. 2008; Messer and

Petrov 2013). Consistently, regions of high functional density, high

rate of amino acid substitutions, and low recombination all show

reduced levels of neutral diversity (Cai et al. 2009; Lohmueller et al.

2011), as expected under recurrent selective sweeps in functional

regions.

On the other hand, there are reasons to question the notion

that adaptation left clear signatures in the human genome. First,

different scans for positive selection have identified largely

nonoverlapping sets of candidates (Akey 2009), which could be

due to a high rate of false positives. Second, MK analyses can be

confounded by a number of factors, such as perturbations left by

demographic events and by the presence of slightly deleterious

mutations (Eyre-Walker and Keightley 2009; Messer and Petrov

2013), and some MK analyses have failed to find evidence for

adaptation in the human lineage (Eyre-Walker and Keightley

2009). Finally, it has been shown that background selection (BGS)

(Charlesworth et al. 1993), a process in which deleterious muta-

tions remove linked neutral variation from the population, re-

duces levels of polymorphism in regions of higher functional

density and low recombination, providing an alternative expla-

nation for the observation of these correlations in the human

genome.

One signature of positive selection—lower levels of neu-

tral variation near functional substitutions (Andolfatto 2007;

Macpherson et al. 2007; Cai et al. 2009)—is not generally

expected under BGS and should therefore provide the clearest ge-

nomic evidence for the action of positive selection. While this sig-

nature was found in the human genome by Cai et al. (2009), it could

not be detected by two recent studies using the newest large-scale

data sets of human diversity (Hernandez et al. 2011; Lohmueller

et al. 2011). In particular, Hernandez et al. (2011) searched for

lower levels of neutral diversity near functional substitutions by

contrasting levels of neutral diversity near nonsynonymous com-

pared with synonymous substitutions. They did not find this sig-

nature in the human genome and, moreover, found that diversity

might in fact be marginally higher near nonsynonymous sub-

stitutions. Simulations showed that this puts sharp limits on the

amount of adaptation by classic selective sweeps in recent human

evolution (Hernandez et al. 2011).
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However, it is likely that the study design of Hernandez et al.

(2011) (also implemented in Drosophila by Sattath et al. 2011) is

strongly biased against finding signatures of positive selection in

the human genome and all other genomes with sharply variable

levels of genomic constraint. This is because, as we show in the

Results, nonsynonymous substitutions in the human genome

tend to be located in regions of weaker constraint and thus weaker

BGS compared with synonymous substitutions. These differences

in levels of BGS should elevate neutral diversity near nonsynonymous

compared with synonymous substitutions. The approach of

Hernandez et al. (2011) would thus detect positive selection only

if the reduction of diversity due to positive selection near non-

synonymous substitutions happens to be greater than the initial

difference in the opposite direction due to BGS.

Here we utilize a number of more sensitive approaches in the

search for signatures of positive selection while attempting to re-

duce the confounding effects of BGS to the greatest extent possi-

ble. Our results suggest that positive selection was frequent in

human history and might have involved adaptive mutations of

substantial selective effect. We estimate that a few hundred strong

adaptive events are likely to be detectable in the human genome,

consistent with the latest scan for positive selection (Grossman

et al. 2013). Moreover, we provide evidence that the majority of

adaptive substitutions were due to cis-regulatory rather than pro-

tein-coding changes, consistent with the King and Wilson (1975)

hypothesis that adaptive divergence is primarily driven by regu-

latory changes.

Results
The search for signals of positive selection in the human genome is

complicated by highly variable levels of functional constraint, and

thus BGS, along the genome. To be able to detect positive selection,

the reduction of neutral polymorphism near nonsynonymous

substitutions needs to be stronger than the elevation of poly-

morphism due to weaker BGS in the same regions. This bias against

detecting evidence of positive selection should be particularly

strong when levels of neutral polymorphism near synonymous

and nonsynonymous substitutions are contrasted, as in the ap-

proach pioneered by Hernandez et al. (2011) and Sattath et al.

(2011). First, these approaches have limited power in the human

genome as the majority (;65%) of all synonymous substitutions

are located extremely close (<0.02 cM) to nonsynonymous ones

(Methods). What is more troubling is that the synonymous sub-

stitutions that are located far from nonsynonymous substitutions

mark regions of particularly strong selective constraint and thus

particularly strong BGS. Specifically, we find that 82% of synony-

mous substitutions are found within conserved segments of the

genome predicted by phastCons (Methods; Siepel et al. 2005),

versus only 56% of nonsynonymous ones.

The reason for this difference between synonymous and

nonsynonymous substitutions is that selectively constrained re-

gions, by definition, lack nonsynonymous substitutions but still

allow changes at less constrained synonymous sites. Because

constrained regions have stronger BGS, this means that BGS could

in principle reduce diversity more drastically near synonymous

than near nonsynonymous substitutions to an extent sufficient to

mask positive selection. To test whether this could happen in the

human genome, we simulate BGS in regions with varying levels of

constraint under currently accepted population size, recombination,

and selection parameters (Supplemental Material). The simulated

regions contain 10% of potentially functional sites, and we vary the

proportion of functional sites that are under constraint from zero to

100%. Note that even in simulations with 100% functional sites

under constraint, we use a distribution of fitness effects (DFE) with

many mutations being virtually neutral, making our analysis overall

conservative (Supplemental Material). These simulations show that

diversity in the strongly constrained regions can be reduced by as

much as 10% on average (Supplemental Fig. 1). This decrease is similar

or even greater than what is expected to be generated by positive se-

lection (Hernandez et al. 2011) and thus could have been sufficient to

hamper previous attempts to detect positive selection near non-

synonymous changes. We therefore believe that using the synony-

mous substitutions as the control for detecting reduction of neutral

polymorphism near nonsynonymous substitutions in the function-

ally heterogeneous human genome might be unduly conservative.

Below we devise sensitive methods for the detection of posi-

tive selection in the human genome. We first search for reduction

of neutral polymorphism near all and near functionally important

nonsynonymous substitutions. We match regions near and far

from nonsynonymous substitutions by levels of BGS measured

using a variety of correlates of BGS, such as levels of functional

constraint and recombination. We focus specifically on regions of

low BGS, because in these regions the bias against finding positive

selection should be the weakest. In addition to level of diversity, we

also use haplotype-based statistics iHS and XPEHH. Unlike the

overall level of neutral polymorphism used in the first set of tests,

we demonstrate that these haplotype statistics are virtually insensitive

to BGS and, as a result, that their extreme deviations are predictive of

recent and strong selective sweeps.

All data analyses are carried out with the 1000 Genomes Phase 1

data 20100804 release (http://www.1000genomes.org). Levels of

neutral diversity are calculated as the average pairwise heterozy-

gosity at putatively neutral sites, scaled by divergence between

human and macaque. Human-specific substitutions at synonymous

and nonsynonymous sites are inferred from human–chimpanzee–

orangutan alignments (Methods).

Choosing analysis windows

BGS is expected to be stronger in regions of low recombination:

Consistent with this, the correlation between neutral diversity and

recombination rate measured in 500-kb windows sliding every

1000 kb is strong and positive (n = 2,247, Spearman’s r = 0.45, P <

2 3 10�16). Note that all correlations reported in this section use

500-kb windows that are at least 500 kb from each other to ensure

independence of the estimates to the greatest extent possible. BGS

should also be stronger in regions of high functional constraint.

We can measure functional constraint using multiple variables, all

of which show strong negative correlations with levels of neutral

diversity in 500-kb windows, including (1) density of coding se-

quences (CDS) (n = 2247, r = �0.22, P < 2 3 10�16), (2) density of

conserved coding sequences (CCDS) and noncoding sequences in

all mammals or just in primates according to phastCons (r =�0.22,

P < 2 3 10�16 and r =�0.25, P < 2 3 10�16, respectively), and (3) the

density of UTRs (r =�0.23, P < 2 3 10�16). All of these correlations

were computed as partial correlations controlling for recombination

rate. In addition, we also find a strong negative partial correlation

between diversity and GC content, controlling for recombination

(r = �0.2, P < 2 3 10�16), which might be related to high GC

content of coding regions (Lander et al. 2001) or some other

property correlated with the GC content.

The segments of conserved DNA identified by phastCons

are shared by mammals and/or primates and represent averaged
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constraint over long evolutionary periods of time. The density of

mammalian and primate conserved sequences being equal, large re-

gions that are particularly devoid of human-specific nonsynonymous

substitutions may still be under stronger constraint. To detect such

regions of unusually strong constraint, and thus BGS, we plot the

distribution of distances to the nearest amino acid substitution in the

human genome in all regions that have CCDS density >0.1% (to

make sure there are CCDS in the windows); 67.4% of the windows are

located <0.1 cM away from a human-specific amino acid substitution,

30% are located 0.1–1 cM, and 2.6% are located farther than 1 cM.

These latter windows may represent regions of unusually strong

constraint.

We quantify whether the regions of moderate to high func-

tional density (CCDS density >0.5%) located far (>1 cM) from any

amino acid substitution are indeed subject to stronger BGS by

conducting a bootstrap procedure (Methods). For each window

located between 0.1 and 1 cM away from an amino acid change, we

match a randomly sampled window located 1 cM or farther whose

functional density, GC content, and recombination do not differ

by more than empirically fixed thresholds compared with the 0.1-

to 1-cM window. Windows <0.1 cM away are excluded from this

comparison since they are the ones most likely to be affected by

positive selection, and we want to focus only on BGS as a function

of distance to the nearest amino acid change. Thresholds of the

bootstrap are adjusted such that the 0.1- to 1-cM windows and

>1-cM windows have similar average functional density, GC con-

tent, and recombination rates. Windows for which no good match

can be found are excluded (the detailed bootstrap procedure is

described in Methods).

Neutral diversity is indeed substantially reduced in regions

that are located >1 cM away from any amino acid substitution,

controlling for functional density, GC content, and recombination

(Methods). Overall, the reduction is 7% (randomization test, P =

8.6 3 10�3) and becomes even stronger (;15%; randomization

test, P = 2.4 3 10�2) in regions where recombination rates do not

exceed 1 cM/Mb. This is consistent with our interpretation that

regions of substantial functional density that are located very far

from any amino acid change are more constrained in a way that

cannot be accounted for using average conservation in more dis-

tant mammalian and primate species. Below we exclude the 2.6%

of the windows that are located >1 cM from an amino acid sub-

stitution unless stated otherwise.

The near-vs-far test

One key expectation under positive selection is a reduction of

neutral diversity near functional substitutions. We first test this

prediction by contrasting neutral diversity in 500-kb windows near

(<0.1 cM) compared to far (>0.5 cM) from any of the 21,278 amino

acid substitutions we identified in the human lineage (Methods).

Importantly, the windows are matched by all parameters associ-

ated with BGS that we described above.

We first carry out this test in the regions with low density of

conserved coding sequences (CCDS density<0.5%) and thus weak

effects of BGS. This analysis reveals a substantial 5% decrease of

neutral diversity near amino acid changes (Fig. 1A; randomization

test P = 6 3 10�3; Methods). As expected under frequent positive

selection, the decrease is more pronounced in low recombination

regions (<1 cM/Mb), where the decrease of diversity is 8% on av-

erage (P = 1.5 3 10�2). The decrease is stronger in the Asian (9.5%,

P = 1.2 3 10�2) and European (9.5%, P = 1.2 3 10�2) populations

than in Africa (5%, P = 7.5 3 10�2) (Fig. 1B–D).

When we include regions of higher conserved coding density

(>0.5%), as well as those located >1 cM away from any amino acid

substitution, we fail to detect any decrease in neutral diversity near

amino acid substitutions. In fact, we find the opposite pattern of,

on average, 4% higher diversity near amino acid substitutions (P =

4.6 3 10�2), reminiscent of the results of Hernandez et al. (2011).

This suggests that BGS can indeed obscure signatures of positive

selection in the human genome, making it essential to control for

BGS and reduce its effects as much as possible when searching for

positive selection.

The functional-vs-nonfunctional test

The regions of low BGS in the near-vs-far test above correspond to

;30% of all the regions in which the test can be applied in prin-

ciple, and ;17% of the genome in total (290 Mb of ‘‘near’’ and 236

Mb of ‘‘far’’ windows; Supplemental Table 1). We are thus unable to

apply this test to the majority of the genome. In addition, the

choice of the threshold of CCDS <0.5% is somewhat ad hoc and

was driven by the need to have enough windows for the bootstrap

procedure while reducing the effect of BGS as much as possible.

In order to find additional signatures of positive selection that

are less sensitive to BGS and can be applied to more of the genome,

we modify the near-vs-far test to compare windows that have the

same overall number of amino acid substitutions (i.e., all the

windows are ‘‘near’’), and then contrast the windows that differ by

the presence or absence of predicted functionally consequential

substitutions, as defined by PolyPhen-2 (Methods; Adzhubei et al.

Figure 1. Lower diversity near versus far from amino acid substitutions.
Each panel shows the level of synonymous heterozygosity near amino
acid changes (pnear) compared with that far from amino acid changes
(pfar) for the particular subpopulation. pnear is the average over all near
windows (<0.1 cM) from the bootstrap procedure (Methods). pfar is the
average over all far windows (>0.5 cM but <1 cM). The gray area depicts
the 95% confidence intervals based on neutral simulations (Methods). The
dashed lines show 95% and 97.5% confidence intervals based on a ran-
domization test (Methods). Randomization tests result in at most 35%
greater variance than the neutral simulations. This is expected given that
neutral simulations do not account for complex demography and other
sources of noise in the data. On the x-axis, #1, #1.5, etc., means that we
use only windows with recombination rates #1 cM/Mb, 1.5 cM/Mb, etc.,
to compare diversity near and far from amino acid substitutions. (All) All
windows are used independently of their recombination rates.
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2010). We reason that predicted functionally consequential sub-

stitutions are more likely to be adaptive than predicted neutral

ones and should be associated with a more pronounced reduction

of neutral polymorphism in their vicinity. At the same time, con-

trolling for the total overall number of nonsynonymous sub-

stitutions in a window naturally controls for the variation in BGS.

We compare neutral diversity in 500-kb windows either near

predicted functional amino acid substitutions (<0.1 cM) or near

predicted neutral amino acid substitutions (<0.1 cM from a neutral

substitution and >0.5 cM from a functional one). The matching

windows must have the same (plus/minus one) total number of

amino acid substitutions. In addition, we again control for the key

genomic variables (densities of coding, conserved coding and non-

coding sequences, recombination rate, and GC content; Methods).

In total, this functional-vs-nonfunctional test includes 823 Mb

near functional substitutions and 768 Mb near nonfunctional ones

(;50% of the genome in total; Supplemental Table 1) and there-

fore greatly extends the span of the human genome we are able to

analyze.

Using this test, we find that neutral diversity is decreased by

;3% on average near functional compared to nonfunctional

amino acid substitutions (Fig. 2A). This decrease is statistically

significant but marginally so (randomization test P = 4.8 3 10�2).

As expected, the decrease of diversity is more pronounced in re-

gions with low rates of recombination (5% on average, P = 2 3

10�2; <1 cM/Mb) (Fig. 2A). The decrease is again weaker in the

African population (3%, P = 0.1) compared with the Asian (5%, P =

4.5 3 10�2) and European populations (7%, P = 5 3 10�3) (Fig. 2B–

D). Together with the near vs far test, this test further suggests

a detectable effect of recent positive selection on human genetic

diversity.

The omnibus near-vs-far and functional-vs-nonfunctional test

The near-vs-far test (Fig. 1) and the functional-vs-nonfunctional

test (Fig. 2) search for different signals in the data and should be

independent of one another. Indeed, all regions in the functional-

vs-nonfunctional test are located near an amino acid substitution,

and thus they are all in the ‘‘near’’ category in the near-vs-far test.

The fact that the ‘‘near’’ regions have lower diversity than the ‘‘far’’

regions should not affect the results of a test that looks only within

the ‘‘near’’ regions. In addition, we confirm by simulation that the

finite number of regions used in the bootstrap procedure does not

generate spurious correlations between the two tests (Supple-

mental Material).

The independence of the two tests allows us to combine them

into a single, omnibus test and calculate a joint P-value (Fig. 3).

In all human populations, the observed combined decreases are

highly statistically significant, as shown by the P-values of the

combined randomization test in Figure 3 (all populations com-

bined, P = 3 3 10�4; Asian, P = 2 3 10�4; African, P = 7 3 10�3;

European, P = 2 3 10�4). Even in Africa, where the signal of positive

selection is consistently weaker in both the near-vs-far and the

functional-vs-nonfunctional tests, the probability of both observed

decreasing by chance is <1%. In European and Asian populations,

the same probability is <0.1%. Taken together, these results strongly

suggest that positive selection has significantly decreased neutral

diversity in the human genome.

Extreme values of XPEHH and iHS near and far
from nonsynonymous substitutions

Both positive selection and BGS are expected to reduce the overall

level of neutral polymorphism. Yet only positive selection, and not

BGS, is expected to drive individual haplotypes to unusually high

frequencies. Tests based on the presence of unusually frequent and

long haplotypes, such as iHS (Sabeti et al. 2002; Voight et al. 2006)

and XPEHH (Sabeti et al. 2007), should therefore be insensitive to

BGS and provide a less confounded approach for the systematic

detection of positive selection in the genome.

We first use extensive forward simulations to confirm this

intuition. We use SLiM (Messer 2013) to simulate 4-Mb regions

that include a 100-kb central region where deleterious mutations

occur with a predefined strength of selection and rate (Supple-

mental Material). We analyze a range of distributions of selective

effects of deleterious mutations (Supplemental Fig. 2), including

a gamma distribution that matches our best current estimate

of the DFE of functional mutations in the human genome

(Keightley and Eyre-Walker 2007). As expected, BGS has a strong

effect on the levels of diversity (Fig. 4) but has no detectable effect

on XPEHH and only a marginal effect on iHS. BGS slightly de-

creases the variance of iHS values, thereby making scans for

positive selection using extreme values of iHS conservative in the

presence of BGS.

We modify the near-vs-far test by using extreme values of iHS

and XPEHH instead of overall levels of neutral diversity near and

far from amino acid substitutions as a measure of positive selec-

tion. For iHS, we consider the distribution of absolute values to

capture adaptation driven by both ancestral and derived alleles and

to avoid issues due to potential mispolarization of ancestral states.

Specifically, we compare the most extreme values of XPEHH and

iHS near and far from amino acid substitutions (Fig. 5). For ex-

ample, we use the 10% of windows with the highest iHS values

near amino acid changes and use the average iHS for these win-

dows. We then compare this value with the average iHS of the 10%

Figure 2. Lower diversity near functional amino acid substitutions. We
compared heterozygosity near functional amino acid changes, pfunc, with
heterozygosity near nonfunctional amino acid changes, pnon-func. pfunc is
the average over all functional windows from the bootstrap procedure
(Methods). pnon-func is the average over all nonfunctional windows. The
gray area depicts the 95% confidence intervals based on the neutral
simulations (Methods). The dashed lines show 95% and 97.5% confi-
dence intervals established based on a randomization test (Methods). On
the x-axis, #1, #1.5, etc., means that we use only windows with re-
combination rates #1 cM/Mb, 1.5 cM/Mb, etc., to compare diversity near
and far from functional amino acid substitutions. (All) All windows are
used independently of their recombination rates.
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most extreme windows far from amino acid changes (Fig. 5). This

comparison is repeated using the 5%, 2%, or 1% most extreme

windows (Fig. 5). We use values of iHS and XPEHH calculated for

the HGDP panel by Pickrell et al. (2009) for the Bantu, East Asian,

and European populations. As before, the ‘‘near’’ windows are <0.1

cM and the ‘‘far’’ windows are >0.5 cM from any amino acid sub-

stitution. We control for levels of recombination and coding density

in the bootstrap procedure. The significance of the differences be-

tween the near and far windows is again calculated using the ran-

domization test (Methods).

Figure 5 shows clear signatures of positive selection in the

iHS and XPEHH modification of the near-vs-far test. iHS shows

significantly more extreme values near amino acid changes in

all three tested populations (Fig. 5, upper row). In line with

our prediction, this pattern is more pronounced in low re-

combination regions (<0.5 cM/Mbp) (Fig. 5, right side of histo-

grams), especially in the African population. In order to increase

the statistical power, we also compare the maximum values of iHS

in East Asians and Europeans in each window near and far from

amino acid changes and find that this test yields even more sig-

nificant results.

Results are essentially the same when using the XPEHH

modification of the near-vs-far test (Fig. 5, second row). We choose

the African population as the reference population and apply the

XPEHH modification of the near-vs-far test in the two remaining

populations. The results are significant in both populations and

again become more pronounced in the low recombination re-

gions (<0.5 cM/Mbp) and when the maximum value of XPEHH in

the two populations is used as a test statistic. Similar results are

also obtained using the CLR test (Supplemental Material; Sup-

plemental Fig. 3; Williamson et al. 2007).

Because iHS and XPEHH are insensitive to BGS, we were able

to carry out these tests even in regions that have high coding

density and in which the tests that rely on the overall level of

polymorphism are too biased by BGS against the detection of pos-

itive selection. Specifically, the ‘‘near’’ windows in the iHS and

XPEHH tests represent a total of 1.56 Gb, and ‘‘far’’ windows rep-

resent a total of 618 Mb, extending the analysis to ;70% of the

human genome (Supplemental Table 1).

Forward simulations of positive selection

We run forward simulations of positive selection using SLiM

(Methods; Messer 2013) in order to determine the frequency and

strength of selective sweeps required to decrease neutral diversity

near amino acid substitutions between 2% and 9.5% in 500-kb

windows, as observed in the data (Figs. 1, 2). In particular, we focus

on regions of low recombination (<1 cM/Mb) and simulate adap-

tation with three different rates of adaptive amino acid substitutions

(proportion of substitutions that are adaptive a = 10%, 20%, and

40%) and two different selection regimes (selection coefficient s =

0.01 and 0.05). Surprisingly, the amount of strong positive selec-

tion required to explain the observed reduction in diversity is very

high (Fig. 6). The observed 9.5% reduction in Europe and Asia is

similar to the average reduction expected if 40% of amino acid

substitutions were adaptive with a selection coefficient of s = 0.05;

they are in the high range if 10% or 20% of amino acid changes

were adaptive with s = 0.01.

This rate appears higher than that estimated with MK ap-

proaches, which predict that 10%–20% or fewer amino acid

changes (Boyko et al. 2008; Messer and Petrov 2013) were adaptive

in the human lineage. While MK estimates include both strongly

(s > 0.01) and weakly (s < 0.001) selected substitutions, our simu-

lations suggest that at least 10% of strongly selected (s = 0.01)

amino acid substitutions would be required to obtain the observed

decrease in diversity. This implies either that at least half of the

adaptive amino acid substitutions were driven by strong selection

or, alternatively, that the majority of adaptive changes are not

amino acid substitutions themselves but instead are adaptations at

nearby, possibly regulatory, sites.

Figure 4. Robustness of iHS and XPEHH to BGS. We tested the effect
of BGS on iHS and XPEHH (Results; Supplemental Material). (Top)
Average heterozygosity; (middle) iHS; (bottom) XPEHH. The full lines
represent average iHS or XPEHH along the simulated region. The
dashed lines represent the limits of iHS or XPEHH 95% confidence
intervals.

Figure 3. Combined near-vs-far and functional-vs-nonfunctional tests.
Clouds of small dots represent the ratios pnear/pfar and pfunc/pnon-func

obtained with the randomization test. The larger dot in each graph rep-
resents the observed pnear/pfar and pfunc/pnon-func. The numerical values at
the lower right of each graph are the P-values obtained after 10,000 iter-
ations of the randomization test. The P-values are estimated as the pro-
portion of the randomizations that give values below the observed value in
both tests.
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Adaptation is centered at the ENCODE-defined regulatory
elements

The above simulations suggest that adaptation by amino acid

substitutions is unlikely to generate all of the observed signatures

of adaptation. We therefore search for adaptation at regulatory

regions by focusing on the regulatory elements defined by the

ENCODE Project Consortium (ENCODE-defined regulatory ele-

ments, or EREs) (Gerstein et al. 2012). ERE density in our analysis is

the density of elements predicted as DNase I hypersensitive sites

and also as transcription factor binding sites identified via ChIP-

seq by the ENCODE Project Consortium (Gerstein et al. 2012).

Note that our strict definition of ERE elements leaves us with only

4% of the positions in the analyzed windows. Moreover, the ERE

content correlates strongly with coding density (n = 2189,

Spearman’s r = 0.73, P < 2 3 10�16), suggesting that EREs are in-

deed often functional.

We examine the correlation between the density of ERE and

iHS in three populations of the 1000 Genomes Phase 1 project

(Supplemental Material). In Europe and Asia, absolute values of iHS

correlate positively with ERE density (Fig. 7B,C), but the correla-

tion is more subtle in Africa, where it becomes positive only in low

recombination regions (Fig. 7A). The correlation is notably stron-

ger in regions with low recombination rates, as expected under

frequent positive selection.

Because ERE density correlates with the coding density and

the coding density correlates with iHS (Fig. 7), it is important to

disentangle the respective contributions of coding and regulatory

sequences to the observed signals of recent positive selection. In

order to do so, we calculate the reciprocal partial correlations be-

tween (1) iHS and ERE density controlling for coding density and

(2) iHS and coding density controlling for ERE density. When using

the whole genome regardless of recombination, partial correlations

between iHS and ERE or coding density are weak and inconsistent

between different human populations, being either positive in

Asia or negative in Africa (Fig. 7A–C). In low recombination regions

(<0.5 cM/Mb), where the effects are expected to be the strongest

and clearest, the results are striking (Fig. 7A–C; Supplemental Table

2): While the partial correlation between iHS and ERE density ap-

pears virtually independent of coding density, the correlation be-

tween iHS and coding density disappears entirely when controlling

for ERE density. These results are robust to the amount of overlap

between the windows used to measure the correlations (Supple-

mental Table 2). In particular, we measure significant correlations

with windows that are located at least 1 Mbp from each other and

thus expected to provide largely independent values of all statistics

(Supplemental Table 2). These results provide evidence that many

signals of positive selection in the human genome may indeed be

due to adaptation centered in regulatory rather than in coding

sequences.

Discussion
In this study, we have used a number of independent approaches to

search for signatures of positive selection in the patterns of variation

in the human genome. Our results show that BGS can inhibit the

detection of even frequent positive selection in humans. The key

Figure 5. Stronger haplotype- and SFS-based signals of positive selection near amino acid changes. This figure shows the comparison of the top 10%,
5%, 2%, and 1% XPEHH and iHS windows near and far from amino acid changes. Randomization test: *P # 0.05; **P # 0.01; ***P # 0.001. (Left side of
histograms) All regions irrespective of recombination rates. (Right side) Only regions with recombination rates <0.5 cM/Mb. The max(EA,EU) histograms
show the results obtained when retaining for each window the maximum signal of the East Asian and European populations.

Figure 6. Simulated decreases of diversity for different rates and
strengths of positive selection. We ran 100 forward simulations (Methods)
to estimate the average and 95% confidence intervals (CI) for the decrease
of diversity near amino acid changes under different rates and strengths of
positive selection. To be conservative, we extended the confidence intervals
from simulations by 35% given that neutral simulations underestimate the
variance by ;35% in the simulated regions, as shown in Figure 1.
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prediction of recurrent positive selection is that neutral poly-

morphism should be lower in regions with more functional sub-

stitutions, for instance, nonsynonymous substitutions. Perhaps

counterintuitively, BGS is expected to generate the opposite signa-

ture: Regions of the genome with coding sequences but very few

nonsynonymous substitutions are likely to exhibit stronger BGS

and lower levels of neutral polymorphism. This means that the

standard approaches that search for adaptation using the signature

of low levels of polymorphism next to nonsynonymous sub-

stitutions—such as those of Andolfatto (2007), Macpherson et al.

(2007), Cai et al. (2009), Hernandez et al. (2011), and Sattath et al.

(2011)—are likely to underestimate the effect of positive selection.

This underestimation is likely to be marginal in small and func-

tionally dense genomes, such as that of Drosophila, where levels of

BGS are expected to be homogeneous along the genome. However,

in larger genomes with heterogeneous distribution of functional

sequences, such as that of humans, the levels of BGS vary sharply

along the genome, and this bias against finding signatures of

positive selection can become profound. We confirmed this as-

sertion using forward simulations of BGS in the human genome.

We were able to detect lower levels of polymorphism near

nonsynonymous substitutions. Surprisingly, our results indicate

that carefully matching windows near and far from nonsynonymous

substitutions for a number of factors known to correlate with selec-

tive constraint and diversity in general is essential but not sufficient

to fully control for BGS. Indeed, decreased diversity near non-

synonymous substitutions is apparent only when genomic regions

of low functional density, and hence weak BGS, are analyzed. The

opposite pattern of higher diversity near nonsynonymous sub-

stitutions is seen in regions of high functional density and hence

strong BGS. Our interpretation of this pattern is that the very fact of

observing a nonsynonymous substitution carries substantial in-

formation not only about rates of adaptation but also about the

lower level of constraint and thus BGS. The latter effect becomes

dominant in regions with strong BGS in general. Note, that although

on balance we believe this is the most parsimonious explanation of

the data and is consistent with the results based on haplotype sta-

tistics that are insensitive to BGS, we cannot exclude that some

unknown variable correlating with average pairwise diversity might

affect our results or that windows in regions of low functional den-

sity exhibit drastically different DFE of deleterious mutations.

Although unlikely, it is therefore still in principle possible to

imagine scenarios where BGS alone could explain our results with

average pairwise diversity. Thus it is essential that we were able to

detect positive selection using the presence of long and frequent

haplotypes that are unlikely to be mimicked by BGS. Indeed, we

conducted extensive simulations of BGS under varying rates and

patterns of deleterious mutation and showed that tests of selection

based on the presence of long and frequent haplotypes (iHS and

XPEHH) are insensitive to BGS. As expected under positive selec-

tion, we detected significantly more extreme values of iHS and

XPEHH near amino acid substitutions. Because these statistics are

insensitive to BGS, we were able to carry out this analysis sys-

tematically on a genome-wide scale, without being restricted to

only the regions with low functional density, as in the case of the

near-vs-far test using average pairwise diversity.

All the evidence together suggests that positive selection left

detectable effects on patterns of variation in the human genome.

However, it is also clear that these patterns are challenging to de-

tect and quantify due to a number of factors in addition to BGS.

First, demographic perturbations such as bottlenecks and admix-

ture can generate variability in the levels of polymorphism and

haplotype structure. Yet it is hard to imagine a scenario in which

these demographic perturbations would affect windows near

amino acid substitutions differently from those that are far from

amino acid substitutions in the long history of evolution since

divergence of humans and chimpanzees. Indeed, the vast majority

of the amino acid substitutions happened long ago, prior to any

demographic event in question. In addition, the windows near and

far from amino acid substitutions that are used in the comparisons

have had exactly the same demographic history. Thus the main

effect of demography is to increase variance in levels of poly-

morphism in windows both near and far from amino acid sub-

stitutions, but it is unlikely to generate false positives by itself. Both

the forward simulations and permutation tests carried out here

highlight substantial variance in levels of polymorphism due to

drift, which strongly limits our ability to obtain precise estimates of

the rate and strength of recent positive selection. Second, it is very

important to use windows with a large physical size (500 kb in our

case) to correctly control for BGS (Methods). This means, however,

that our analysis is likely limited to detecting only the effects of

strong recent positive selection, given that only selected mutations

with selection coefficients on the order of $1% can affect diversity

in regions of several hundreds of kilobases (Sabeti et al. 2006).

This bias against weaker positive selection further complicates

attempts to precisely quantify the rate and strength of positive

selection. Therefore our results suggest that BGS may make it far

more difficult to distinguish and quantify the rates of weakly and

strongly advantageous mutations, as could be done in Drosophila

(Macpherson et al. 2007; Sattath et al. 2011). Third, patterns of

recombination may also make it more difficult to detect positive

selection in human compared with Drosophila (Myers et al. 2005).

Indeed, recombination rates are known to be more heteroge-

neous in human than in Drosophila, and this may add even more

variance in our analyses.

In our simulations of positive selection, we estimate that the

observed decrease of diversity of ;10% near amino acid sub-

stitutions would correspond to roughly 100 strong sweeps (s = 0.05)

Figure 7. Most human recent positive selection occurs in regulatory
sequences. The filled circles and squares show the correlation coefficients
of the absolute values of iHS with the density of regulatory and coding
sequence density, respectively, controlling for recombination and average
pairwise diversity (Methods). The open circles and squares show partial
correlations. For instance, an open circle shows partial correlation be-
tween absolute values of iHS and regulatory density controlling for coding
density (also controlling for recombination and average pairwise di-
versity). All correlations are Spearman’s rank correlations or partial corre-
lations. Correlation coefficients >0.05 are all highly significant (P < 2 3

10�16).
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in the past 100,000 yr. However, confidence intervals in our sim-

ulations (Fig. 6) and the lack of knowledge of the DFE of advan-

tageous mutations (Fig. 6) make it very hard to estimate the rate of

adaptation precisely. While our results do exclude the possibility

that adaptation had no effect on neutral diversity, they provide

only a very rough order of magnitude estimate for the rate of recent

positive selection.

It is also worth noting that although signals of positive se-

lection are detectable in all tested populations, these signals are

systematically stronger in the out-of-Africa populations. This pat-

tern will require further investigation, as it could be due to many

different and nonmutually exclusive reasons such as variation in

demography, differences in patterns of linkage disequilibrium, dif-

ferent rates of adaptation, different patterns of monogenic and

polygenic adaptation in different populations, and differences in

the proportion of adaptation from de novo mutations versus from

standing genetic variation.

In this study, we detect and quantify a number of signatures

left by apparently abundant recent positive selection in the ge-

nome-wide signals in diversity in humans. We also provide sug-

gestive evidence that positive selection may have been driven

largely by regulatory rather than coding sequences. The primary

evidence for this comes from two observations. First, haplotype

signatures of positive selection captured by extreme values of iHS

correlate better with the density of ENCODE regulatory elements

(ERE) than with the density of coding sequences (Fig. 7). Second,

admittedly simplified simulations suggest that without a sub-

stantial number of strongly advantageous regulatory substitutions

taking place in the same regions as the amino acid substitutions,

the total impact of positive selection on diversity would require

a seemingly unreasonable number of strongly advantageous

amino acid substitutions. Because windows near amino acid sub-

stitutions have 21% more human-specific fixed regulatory (ERE)

substitutions compared with the windows far away from amino

acid substitutions (as defined in the near-vs-far test, Fig. 1) and

because ERE substitutions are ;30 times more common than

amino acid substitutions, even a modest difference in the rate of

adaptation within EREs between near and far windows could po-

tentially explain our results for the near vs far test.

Although our results support that most adaptation is regula-

tory, the possibility also remains that rates of coding adaptation

obtained by MK approaches may be strong underestimates, as

previously discussed by Eyre-Walker and Keightley (2009). This

said, our conjecture is consistent with recent results showing that

adaptation between different human populations may have been

driven primarily by regulatory rather than coding differences as

well (Fraser 2013). The challenge for the future is to better quantify

and identify the nature of recent human-specific adaptations. This

will likely require improved modeling of BGS in the human ge-

nome, based on a deeper knowledge of the DFE and its variability

along the human genome.

Methods

Human-specific nonsynonymous and synonymous fixed
substitutions
Human-specific nonsynonymous and synonymous substitutions
were obtained using human–chimpanzee–orangutan coding DNA
sequence (CDS) alignments. Human CDS are first extracted from
the Ensembl v64 database (Flicek et al. 2012; http://www.ensembl.
org/). For each gene, only the longest CDS is retained. The longest

human CDS are then mapped onto the chimpanzee and orangutan
genomes using BLAT (protein–protein BLAT, 60% minimum iden-
tity) (Kent 2002). The best, highest identity chimpanzee and
orangutan BLAT hit sequences are then mapped back on the human
genome. Only those human–chimpanzee and human–orangutan
best reciprocal hits are retained for further analysis. Extracting
chimpanzee and orangutan CDSs from their respective genomes
using BLAT instead of directly using Ensembl annotations ensures
that the sequences used during subsequent global alignment steps
have good local similarity. The analysis is further restricted to those
best BLATreciprocal hits that coincide with Ensembl v64 one-to-one
orthologs. A total of 17,237 CDS multiple alignments are finally
obtained using PRANK (Löytynoja and Goldman 2008) under the
codon evolution model settings. PRANK used with its codon evo-
lution model was previously shown to be the most accurate solution
to align CDS (Fletcher and Yang 2010). From these alignments,
a total of 27,538 and 40,709 nonsynonymous and synonymous
human-specific substitutions are identified, respectively. This in-
cludes only those cases where chimpanzee and orangutan both
exhibit the same nucleotide at the orthologous position. Of the
27,538 nonsynonymous substitutions, a total of 21,278 are fixed in
all African, Asian, and European populations. Of the 40,709 syn-
onymous substitutions, 32,666 are fixed. The ratio of the number of
fixed nonsynonymous to fixed synonymous substitutions is 65.1%,
which is in very good agreement with the previous result of 64%
obtained by Boyko et al. (2008). Only diversity patterns close to
fixed substitutions are analyzed in the near-vs-far and the func-
tional-vs-nonfunctional tests. Focusing on fixed substitutions is
therefore intended to make results easier to interpret. This is also
expected to be conservative when searching for sweeps, because we
exclude fixations that occurred after the split of African and non-
African populations.

PolyPhen-2 analysis

We use PolyPhen-2 (Adzhubei et al. 2010) to identify which hu-
man-specific amino acid substitutions are more likely to be func-
tionally consequential. PolyPhen-2 annotates SNPs but can also be
used to annotate fixed amino acid changes by using the REVERSE
option. Of the 21,278 fixed amino acid changes specific to the
human lineage, 18,924 (89%) can be annotated. Of these, 15,488
are annotated as benign, 1874 as possibly damaging, and 1562 as
probably damaging by PolyPhen-2. The possibly damaging and
probably damaging amino acid changes (18% of the total) are more
likely to be functionally consequential than the benign ones.
Thus, in the functional-vs-nonfunctional test (main text and sec-
tion ‘‘Bootstrap Procedure’’ below), functional windows are those
close to a possibly or probably damaging amino acid change, and
the nonfunctional windows are those close to a benign amino acid
change, but far from any possibly or probably damaging one.

Neutral diversity

Neutral diversity is measured using average heterozygosity p,
measured as 2f (1 � f )n/(n � 1), where f is the frequency of the
nonreference allele in the 1000 Genomes Phase 1 20100804 re-
lease (December 2010 update), and n is the number of chromo-
somes in 500-kb windows (see below for an in-depth discussion
on window size). More specifically, average heterozygosity is cal-
culated separately for the three African, Asian, and European
populations. We use only positions outside of CDS, UTRs (from
Ensembl v64) and phastCons CNEs (from the UCSC Genome
Browser), simple repeats, and transposable elements identified by
RepeatMasker (http://genome.ucsc.edu/). Excluding functional
elements, repeats, and positions not aligned with a nucleotide in
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macaque, approximately a third of the positions within the win-
dows can be used on average to measure neutral diversity. We also
exclude all windows closer than 5 Mb to centromeres or telomeres
from our analysis. Diversity is further scaled by the number of po-
sitions found to be divergent between human and macaque in
human–macaque BLASTZ (Schwartz et al. 2003) alignments re-
trieved from the UCSC Genome Browser (http://genome.ucsc.edu/).
This is done to eliminate the effect of local variations in mutation
rate or remaining strong selective constraint. Because local changes
in mutation rate and strong selective constraint affect both diversity
and divergence equally, using the ratio of diversity on divergence
removes at least partially the effects of heterogeneous mutation
rates and selective constraint. Using scaled diversity implies that
only those positions where a nucleotide (non-N or any other un-
defined position) is aligned with a nucleotide in macaque are used.
Scaled neutral diversity is calculated within the 500-kb windows
sliding every 5 kb in the genome. For a complete explanation on
why we choose large windows with a fixed physical rather than
genetic size, see Supplemental Material.

Bootstrap procedure

In humans, local functional density is very heterogeneous and is
a main determinant of neutral diversity. Regions of high functional
density have higher levels of BGS and hence lower levels of neutral
diversity (McVicker et al. 2009; Lohmueller et al. 2011). GC con-
tent and recombination also have a strong influence on levels of
neutral diversity (Results). In our study we want to characterize the
effect of positive selection on neutral diversity. This is done by
comparing neutral diversity in regions of the genome where the
rate of positive selection is expected to be higher with neutral di-
versity in regions where the rate of positive selection is expected to
be lower. Genomic windows with potentially higher rates of pos-
itive selection are called tested windows, and genomic windows
with potentially lower rates of positive selection are called control
windows. In the near-vs-far test, tested windows are the windows
near amino acid changes (nearest amino acid change at <0.1 cM
from the center of the window), and the control windows are
windows far from any amino acid change (>0.5 cM). In the func-
tional-vs-nonfunctional test, tested windows are the windows near
functional amino acid changes according to PolyPhen-2 (<0.1 cM),
and the control windows are windows near nonfunctional amino
acid changes (<0.1 cM) but far from any functional amino acid
change (>0.5 cM). In addition to positive selection, we also tested
whether windows very far from any amino acid change (>1 cM)
experience more BGS than windows moderately far from amino
acid changes (between 0.1 cM and 1 cM). In this case tested win-
dows are the windows between 0.1 cM and 1 cM, and control
windows are the windows >1 cM from any amino acid change.

The major challenge when testing positive selection by
comparing tested and control windows is to make sure that both
kinds of windows are as similar as possible. One may think of an
example where in tested windows the percentage of positions
within CDS is 2% on average and only 0.5% in control windows. In
this case, there are four times more CDS in the tested windows than
in the control windows. BGS is thus stronger in the tested win-
dows. In such an example, neutral diversity is lower in tested
windows than in control windows not because of positive selec-
tion but because of stronger BGS, and it is impossible to conclude
anything about positive selection. This example shows that in
order to be conclusive about positive selection, we need to com-
pare windows with levels of BGS as similar as possible. This means
that the tested and control windows need to have, on average,
similar functional densities, in addition to similar recombination
rates and GC content. This is achieved by using a simple bootstrap

procedure. For each tested window, we match a control window
whose characteristics are not more different than fixed thresholds
compared with the tested window. These characteristics are the
average recombination rate in the window obtained from the most
recent deCode 2010 genetic map (Kong et al. 2010), GC content,
CDS density (Ensembl v64), conserved coding sequences (CCDS)
density (Ensembl v64), UTR density (Ensembl v64), and total
functional density (TFD). CCDS are the 83% of coding sequences
that overlap conserved segments (mammal-wide and/or primate-
wide) predicted by phastCons (Siepel et al. 2005) and available at
the UCSC Genome Browser (phastCons applied to a genome
alignment of 44 mammals). TFD is the percentage of positions in
a window that are in at least one of these different types of func-
tional elements: CDSs, CCDSs, UTRs, and phastCons conserved
noncoding elements (CNEs). In addition, we also control for the
amount of surrounding CDS, which is the number of positions
within a CDS up to 0.1 cM upstream of and 0.1 cM downstream
from a window.

For each tested window, we find a matching control window
whose recombination, GC content, CDS, CCDS, UTR, TFD, and
surrounding CDS are comprised of between x% and y% of their
values in the tested window. The values of x and y are specific to
each of the controlled factors, and x is smaller than one while y is
greater than one. For example, we could ask control windows to
have a CDS density comprising between x = 80% and y = 120% of
the tested window CDS density. In practice, we adjust the thresh-
olds so that when the bootstrap is complete, tested windows and
control windows have very similar average recombination rates,
average GC content, and average CDS, CCDS, UTR, TFD, and
surrounding CDS. In addition, we also make sure that they have
very similar phastCons CNE density.

Although we cannot avoid slight differences, we make sure
they are in the conservative direction. For example, the average
CDS density in the control windows may be 3% higher than in the
tested windows, and the average recombination rate may be 5%
lower. When no matching control window is found in the genome,
the tested window is excluded from the analysis. The same control
window can be used several times as a match for several tested
windows. The different amounts of sequences that could be used
for each test are shown in Supplemental Table 1. The x% and y%
thresholds used for the different tests conducted in this analysis are
provided in Supplemental Table 3. Note that the thresholds were
adjusted so that they could be used for all the repetitions of a given
test in various conditions. For example, in the near-vs-far test, we
used thresholds that can be applied whether or not we use only
windows below a fixed recombination threshold and whether or
not we use only low CCDS windows (Results). This is to ensure that
the results obtained under these different conditions can be fairly
compared between each other. For the near-vs-far test, low CCDS,
and recombination rate <1 cM/Mb (Results), we further controlled
that the observed decrease of diversity is robust to changing x and y
for several factors, while still having conservative comparisons be-
tween near and far windows (Supplemental Table 4).

For each test, the bootstrap procedure is conducted 10 times,
independently. Each time, we calculate the average neutral diversity
in tested windows Ptested, the average neutral diversity in control
windows Pcontrol, and the ratio Ptested/Pcontrol. Different realizations
of the bootstrap procedure give very similar Ptested/Pcontrol ratios. For
all tests and for each realization, the ratio Ptested/Pcontrol never differs
by >10% of its average over the 10 realizations. The observed ratios
Ptested/Pcontrol shown in Figures 1 and 2 represent the average over
the 10 realizations of the bootstrap procedure. Because there is so
little variation between the different realizations of the bootstrap
procedure, we always use the first realization for running pop-
ulations simulations (see section ‘‘Population Simulations’’ below)
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and for calculating P-values of the randomization test (see section
‘‘Randomization Test’’ below). Note also that we do not include
average sequencing depth in the windows as one of the controlled
variables, although it is well known to have an effect on the esti-
mation of neutral diversity. This is because we found this is not
necessary since, on average, the tested and control windows retained
by the bootstrap procedure have extremely similar average se-
quencing depths that never vary by >0.5% from each other.

Randomization test

We use a randomization test to estimate the significance of the
differences of neutral diversity we observe between tested and
control windows used in the bootstrap procedure. In order to ob-
tain a random distribution of Ptested/Pcontrol for a given realization
of the bootstrap procedure, we need to shuffle tested and control
windows while accounting for a number of features of the analysis.
First, the tested and the control windows are often clustered to-
gether, much like the windows represented along a chromosome
in Supplemental Figure 5. Ptested and Pcontrol are calculated from
groups of neighboring, overlapping windows that have correlated
neutral diversity values. Compared to a situation where we would
have the same number of windows but all independent from each
other, this grouping substantially increases the variance of Ptested,
Pcontrol and thus of the ratio Ptested/Pcontrol. Shuffling individual
windows independently from each other is therefore very likely to
greatly underestimate the true variance of the ratio. Second, during
the bootstrap procedure, the same control window can be matched
with several tested windows, which should also be taken into ac-
count during the randomization process. In order to maintain the
structure of the sampling scheme used in the bootstrap procedure,
we shuffle blocks of neighboring windows (Supplemental Fig. 4).
Windows used in the bootstrap procedure are first ordered
according to their genomic positions. We then cut 20 segments of
equal size (Supplemental Fig. 4 represents a situation with only
three segments). This is done to maintain the grouping of win-
dows. The 20 segments are then shuffled to obtain a new random
ordering of windows. In addition, a segment can be flipped with
a probability of 50%. The same sampling scheme that was used
during the bootstrap procedure is finally applied to the random-
ized windows. For example, in the genome, the positions 19,
20, and 21 are occupied by tested windows tested_19, tested_20,
and _tested_21, which are all matched to the same control win-
dow, control_29 at position 29 (Supplemental Fig. 2). After the
randomization, positions 19, 20, and 21 are now occupied by the
tested windows tested_8, tested_9, and tested_10 that are now all
matched to window tested_18 at position 29. This way, the
neighboring windows, tested_19, tested_20, and tested_21 have
been replaced by three other neighboring windows, and window
tested_18 matches three times as window control_29. The ran-
domization process is repeated 10,000 times to obtain the P-value
for the test. P-values are calculated as the proportion of randomi-
zations where random Ptested/Pcontrol is lower or higher than the
observed Ptested/Pcontrol depending on the case studied. This means
that the randomization test is a one-sided test.

Population simulations

In our study we use forward simulations to estimate the ranges of
the ratios of

Q
near/

Q
far and

Q
func/

Q
non-func under both a de-

mographic scenario of panmixia with no advantageous mutation
and under a scenario of panmixia with different rates and strengths
of positive selection. Simulations were conducted using SLiM
(Messer 2013). We simulate segments of the human genome where
windows were sampled by the bootstrap procedure. Supplemental

Figure 3 shows how those segments are defined based on where the
sampled windows are in the genome and how far they are from
each other. In Supplemental Figure 5, 500-kb sampled windows
define three nonoverlapping groups along a chromosome. The
first and second groups (starting from the left) are at a distance of
0.23 cM from each other. These two groups are fused together to
form a genomic segment that includes them both. The segment
is further extended 0.1 cM upstream and 0.1 cM downstream to
avoid edge effects and to include the effect of eventual neigh-
boring advantageous mutations not included in, but close to, the
sampled windows (Supplemental Fig. 5). The third group is at
0.84 cM and is treated as an independent segment. Overall,
groups of windows closer than 0.5 cM from each other are fused
together, while groups >0.5 cM from each other are treated as
independent simulated segments.

All the segments in the genome are simulated independently,
and the simulated ratios Ptested/Pcontrol are calculated exactly as
they are when using the bootstrapping procedure. This means that
the same 500-kb windows are used and that within each window,
variants whose coordinates fall within a functional element or
a repeated element or do not align with macaque in the real ge-
nome are excluded from the calculation of simulated diversity. The
whole operation is repeated 100 times for the estimation of con-
fidence intervals of Ptested/Pcontrol.

The recombination maps used in each segment match the
deCode 2010 recombination map (Kong et al. 2010). The simula-
tions were conducted using a population of 500 individuals, and
the recombination and mutation rates were rescaled accordingly to
match the average recombination rate (1.16 cM/Mb) and the av-
erage heterozygosity (0.001) observed in the human genome. After
a burn-in of 5000 generations, the neutral simulations are con-
tinued for 1000 additional generations (this is equivalent to 20,000
generations in a nonrescaled 10,000 individuals human population).
Simulations with positive selection are continued for 2500 genera-
tions after the burn-in to ensure that all advantageous mutations
introduced after the burn-in are given a fair amount of time to fix.

For the simulations with positive selection, we introduce ad-
vantageous mutations at random generation times with a fixed
rescaled selection coefficient at positions where amino acid
changes are found in the human genome. As an example, we can
simulate a scenario where 10% of the amino acid changes were
adaptive with s = 1%. The selection coefficient of 1% in a pop-
ulation of 10,000 individuals is rescaled to 20% in our 500 in-
dividuals simulated population to maintain the same intensity of
selection. In order to obtain 10% of fixed adaptive mutations given
the probability of fixation (2s = 40%), we need 25% of the in-
troduced mutations with s = 20%. These advantageous mutations
are introduced randomly among all the locations with an amino
acid change. For the sake of speed in our simulations with positive
selection, we use 2500 generations after burn-in, although in our
rescaled population the number of generations to the human–
chimpanzee most recent ancestor is 10,000 generations (rescaled
from 200,000 generations assuming a TMRCA of 5 Myr and
a generation time of 25 yr). Advantageous mutations were thus
attributed an introduction time between 1 and 10,000 generations
after burn-in, but only those mutations having a random in-
troduction generation between 1 and 2500 were actually in-
troduced in the population.
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