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That gain must ultimately be associated with some cost is a 
fundamental premise in fields spanning economics, engi-
neering and biology. Biology in particular has a rich tradition 

of both alluding to and attempting to define trade-offs: here trade-
offs imply that a part of trait space is not accessible by evolution 
such that, within a defined period of time, a lineage cannot evolve 
improved performance of two or more traits simultaneously above 
some threshold. Such evolutionary trade-offs have been suggested 
by various biological phenomena—for instance, organisms with 
high fecundity tend to have a short lifespan1–3 and those with large 
eggs tend to lay fewer4,5.

Despite the plethora of such examples of negative correlations 
between specific traits, such correlations alone are insufficient to 
demonstrate the existence of trade-offs. Indeed, many alternative 
explanations exist. For instance, consider an environment in which 
only one trait is under selection while a second is not. Over evolu-
tionary time, performance in the first trait is likely to increase while 
performance in the second is likely to decrease due to the accumula-
tion of damaging mutations in the absence of purifying selection6,7. 
At the same time, a reciprocal relationship may be observed in an 
alternative environment if the second trait is subject to selection 
and the first is not. This will lead to a negative correlation between 
performances of the two traits. However, it is entirely possible that 
mutations that improve both traits do exist but that they are not 
particularly common and not particularly advantageous in either 
of the environments. Additional explanations, such as sexual selec-
tion driving some traits to seemingly suboptimal states8, or current 
selective pressures not corresponding to the way natural selection 
acted in the past, might also lead to negative correlations among 
traits in the absence of trade-offs. In short, negative correlation in 
performance between two traits is expected in the presence of trade-
offs, but in and of itself is not sufficiently strong evidence for the 
existence of trade-offs.

Consider an organism with two traits under selection (Fig. 1a): 
its trait-fitness space is two-dimensional, with each axis represent-

ing performance for one of the traits. If a trade-off exists between 
the two traits, for every biologically possible value of trait 1, the best 
value for trait 2 performance will be constrained by trait 1, generat-
ing a Pareto optimality front (or Pareto front)9. Such a Pareto front 
not only represents the set of optimal trait combinations, but also 
separates the ‘accessible’ from the ‘inaccessible’ trait space. For indi-
viduals on the Pareto front (green dots in Fig. 1a), the existence of 
trade-offs can be demonstrated straightforwardly: increasing the 
performance for one trait will inevitably decrease that for another. 
By contrast, individuals behind the Pareto front (the black dot in 
Fig. 1a) are able to improve performance in both traits simulta-
neously. It is generally assumed that organisms should be located 
on or near a ‘long-term’ Pareto front, as they are products of very 
long-term evolution1,2,5,9–12. Surprisingly, results from experimen-
tal evolution often demonstrate the improvement of multiple traits 
simultaneously, suggesting that, at least for the conditions and traits 
tested, the ancestor does not lie on a Pareto front13–19. However, it is 
important to appreciate that it is possible for an individual to be on 
a higher-dimensional Pareto front, defined by multiple traits but, 
when measuring only a subset of the traits, the organism will appear 
to be behind the front (Fig. 1b). In this case, improvement in perfor-
mance in the subset of traits must come at the cost of performance 
in the additional, unmeasured traits that contribute to the higher-
dimensional front.

The Pareto front is typically thought of as being defined by 
physical, structural or physiological constraints and is usually con-
sidered to be static. However, the Pareto front may also be defined 
by genetic constraints, such that the space above the front might 
be locally inaccessible in the short term due to the rarity of spe-
cific genetic changes required to reach that region of trait space. For 
example, if the inaccessible part of trait space requires the system 
to move through a fitness valley, the system might remain at the 
Pareto front at least in the short term. The transition into the locally 
inaccessible part of the space would then be seen as a true evolu-
tionary innovation that shifts the Pareto front to a new location.  
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The Pareto front is thus defined by both the timescale of evolution 
and the physiological or structural relationships among the traits, 
and therefore may be dynamic over time.

To explore whether even the first step of adaptation can reveal 
evolutionary constraints in the form of Pareto fronts, one needs to 
sample a large number of adaptive mutants selected for multiple 
traits under a range of conditions, and then precisely measure their 
performance along each trait axis (Fig. 1c,d). Pareto fronts, if pres-
ent, can then be inferred by an absence of mutants able to maximize 
both traits simultaneously (the large red dot in Fig. 1a,c). If the first-
step mutations can reach the short-term Pareto optimality front 
and if the density of sampling is such that any adaptive single-step 
mutant that would land beyond the defined front would have been 
detected with high likelihood, then a short-term Pareto front will 
have been demonstrated.

Here we set out to investigate the existence of Pareto fronts 
among multiple traits, by evolving barcoded yeast populations 
under a number of carefully chosen conditions, selecting for 
improved performance in different phases of the yeast growth cycle, 
including fermentation, respiration and stationary phases. We iso-
lated ~500 independent adaptive clones, most of which carry a sin-
gle beneficial mutation. We found that a number of adaptive clones 
improved all three measured performances to a modest extent 
without apparent trade-offs, indicating that the ancestor cannot 
be located on a Pareto front for the measured traits. However, no 
adaptive clones were able to maximize performance in some pairs 

of traits. We were able to delineate apparent Pareto fronts between 
fermentation and respiration phase, as well as between respiration 
and stationary phase, but not between fermentation and station-
ary phase performance in our short-term evolution experiments. 
Importantly, due to a large number of sampled and tested clones 
we could assert that no single point mutation in the genome of the 
founding yeast strain in our experiment can improve the perfor-
mance substantially beyond either of the two defined Pareto fronts. 
Finally, by sequencing hundreds of adaptive clones, we identified 
the genetic basis underlying the identified trade-offs and revealed 
new targets of adaptation.

results
Experimental system and isolation of evolved clones. When yeast 
cells grow in conditions with a fermentable carbon source, such as 
glucose used in this study, they go through a sequence of growth 
phases: (1) lag phase, where cells acclimate to the medium, with no 
cell division; (2) fermentation, where cells divide exponentially by 
converting glucose into ethanol; (3) respiration, where glucose is 
exhausted and cells divide slowly by consuming the ethanol pro-
duced during fermentation; and (4) stationary/starvation phase, 
where cells cease growth because readily available carbon levels in 
the medium have been depleted (Fig. 2a).

To isolate adaptive clones with improved performance in fer-
mentation, respiration and/or stationary phase (or combinations 
thereof), we propagated barcoded haploid yeast populations under 
four serial transfer conditions of differing cycle length: (1) 1-d 
(referred to as Evo1D), including 4-h lag, 16-h fermentation and 4-h 
respiration phases; (2) 2-d (Evo2D, conducted in ref. 20) including 
additional 24-h respiration phase; (3) 5-d (Evo5D), including fur-
ther 12-h respiration and 60-h stationary phases; and (4) alternating 
1- and 5-d transfer (Evo1/5D) (Fig. 2a). Note that even though the 
same growth medium was used in the above conditions, we refer 
to them as different conditions because the differences in their 
transfer periods generate profoundly different selective pressures. 
We used barcode trajectories to determine whether cell cultures 
in cycle 11 contained a high proportion of diverse adaptive clones. 
Furthermore, our previous analysis indicated that at this time point 
most adaptive clones would contain only a single adaptive muta-
tion20. Subsequent sequencing of individual clones (ref. 21 and see 
below) confirmed this supposition.

We isolated clones from cycle 11 for subsequent analysis. 
Specifically, from Evo1D, Evo2D, Evo5D and Evo1/5D we isolated, 
respectively, 120, 3,048 (isolated in ref. 21), 157 and 384 distinct 
evolved clones carrying unique barcodes. We previously found that 
~50% of clones isolated from Evo2D had self-diploidized during the 
course of evolution21 and were beneficial across all fitness measure-
ment conditions22. We therefore assayed the ploidy of newly isolated 
clones, and observed 43, 45 and 14% diploids among clones isolated 
from Evo1D, Evo5D and Evo1/5D, respectively.

We measured the fitness of all isolated clones in 1-d (Fit1D), 
2-d (Fit2D), 3-d (Fit3D) and 5-d (Fit5D) serial transfer conditions  
(Fig. 2b; clones from Evo2D were measured in ref. 22) using the 
method developed in ref. 21. For each clone, we therefore have its fit-
ness in both the ‘home’ condition (except for Evo1/5D clones) and 
the ‘away’ condition. Note that one condition (Fit3D) was not used 
as an evolutionary condition but instead was important for evalua-
tion of stationary phase performance. Below we use these values to 
investigate patterns of local adaptation and to estimate the perfor-
mance of each clone in the fermentation, respiration and stationary 
phases. Using the fitness and ploidy measurements, we identified 
66, 144, 58 and 132 adaptive haploids and four, 40, 57 and six high-
fitness diploids (assumed to have additional beneficial mutations 
besides diploidy) from Evo1D, Evo2D, Evo5D and Evo1/5D, respec-
tively. We refer to these adaptive haploids and high-fitness diploids 
collectively as adaptive clones.
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Fig. 1 | evolutionary constraints in trait-performance space.  
a, The Pareto optimality front separates the evolutionary accessible  
space (white) from the inaccessible space (shaded). The red dot  
represents mutants that maximize both traits simultaneously. When 
organisms are on the Pareto optimality front (green dots), increasing  
the performance for one trait decreases that for the other. By contrast, 
when organisms are behind the Pareto front (black dot), organisms  
can improve the performance of both traits until the front is reached.  
b, An organism on a three-dimensional Pareto surface (green dot) appears 
to be suboptimal when it is projected onto a two-dimensional space.  
c,d, When the ancestor (Anc) is behind the Pareto front, many individuals 
occupying different parts of the trait space are required to characterize  
the Pareto front (c). By contrast, too few individuals are insufficient to 
delineate the front (d).
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Local adaptation results from performance differences in differ-
ent growth phases. We observed a wide range of fitness in both the 
home and away environments (Fig. 2c). For example, the fitness of 
all adaptive clones varied from −0.35 to +2.2 per growth cycle in 
Fit5D, suggesting multiple adaptive strategies and targets of adapta-
tion among these clones. While only 4.5% of the adaptive clones are 
maladaptive in any away condition, we find that, in general, adap-
tive clones exhibit evidence of local adaptation. Specifically, for each 
fitness re-measurement condition, both the average and highest fit-
ness of clones evolved in the home condition (indicated by arrows) 
are greater than those of clones evolved in the away conditions. 

Nonetheless, under a given fitness measurement condition, not all 
‘home' clones are more fit than all ‘away' clones.

We further used our combined fitness data to determine the per-
formance of individual clones in three of the phases in the growth 
cycle: fermentation, respiration and stationary (Fig. 2d). Here, as 
cells spend different amounts of time in each growth phase, we 
define performance as the increase in fitness, per hour, for a given 
growth phase; our previous study demonstrated that the overall fit-
ness scales linearly with the amount of time spent in each of the 
growth phases22. The slope of the relationship between the rela-
tive fitness of a clone and the length of a particular growth phase 
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Fig. 2 | experimental design and observation of local adaptation and trade-offs. a, Three chosen evolutionary conditions span different phases of the 
yeast growth cycle. Clones were also evolved in Evo1/5D. b, Fitness measurement conditions designed to quantify fermentation, respiration and stationary 
performance (fitness change h–1) of each clone. Dashed vertical lines separate different growth phases, coloured as in a. c, Fitness measurements of 
adaptive clones, grouped by their home evolutionary condition, in home and away conditions. Arrows indicate adaptive clones measured in their home 
condition. The lower and upper hinges of each box correspond to the first and third quartiles (25th and 75th percentiles). The whiskers extend from the 
hinge to a value no further than 1.5× interquartile range from the hinge. The width of the violin represents the probability density of the data at different 
fitness values. d, Performance of adaptive clones’ fermentation (Fer), respiration (Res) and stationary (Sta) phases grouped by their evolutionary 
condition. + or – indicate increased or decreased performance, respectively, compared with the ancestor. e, Clones are separated by their evolutionary 
condition and coloured by their stationary phase performance. Each dot represents a clone. Note that some blue-coloured clones from Evo5D and Evo1/5D 
(indicated by arrows) improve performance in all three growth phases.
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(measured as fitness change per hour) can thus be used as a mea-
sure of clone performance in that phase. For instance, as the clones 
spend an extra 24 h in respiration during every cycle when growing 
under Fit2D compared to Fit1D, we can calculate respiration per-
formance by subtracting the relative fitness of each clone in Fit1D 
from that in Fit2D and then dividing by 24 h: (Fit2D – Fit1D)/24. 
Similarly, we calculated the fermentation ((Fit1D – 4 × respira-
tion performance)/16, as cells go through 4-h respiration and 16-h 
fermentation in the 1-d condition) and stationary performances 
((Fit5D – Fit3D)/48) (Methods, ‘Quantification of performance in 
growth phases').

We compared these three performances for clones evolved in all 
four conditions. Overall, while clones from each condition often 
revealed specific and consistent patterns of apparent trade-offs, the 
trade-offs observed were not necessarily shared across all conditions 
(Fig. 2d,e). For example, we previously found that most adaptive 
clones from Evo2D have improved performance in both fermen-
tation and respiration, but decreased performance in stationary 
phase22. By contrast, adaptive clones from Evo1D have improved 
performance in fermentation yet decreased performance in res-
piration and nearly unchanged performance in stationary phase. 
Most adaptive clones from Evo5D exhibit yet another different pat-
tern—improved performance in both fermentation and stationary 
phases—but their performance in respiration on average is largely 
unchanged. Finally, adaptive clones from Evo1/5D have improved 
fermentation and stationary phase performance and generally 
decreased respiration performance. Overall, we found adaptive 
clones that improved every pair of fermentation, respiration and sta-
tionary phase performance, as well as some that showed improved 
performance across all three (indicated by arrows in Fig. 2e),  

suggesting that the ancestor is behind any potential Pareto front for 
these three performances.

The genetic basis of adaptation and trade-offs. We determined 
the genetic basis of adaptation by genome-wide sequencing of 
47, 67 and 85 adaptive clones from Evo1D, Evo5D and Evo1/5D, 
respectively. Putative adaptive mutations were successfully identi-
fied in 35 (74%), 66 (98%) and 81 (95%) of these clones, respec-
tively. The identity of 125 adaptive mutants from Evo2D was 
determined previously21,22. Many genes or pathways were recur-
rently mutated in our adaptive clones—in such cases we can be 
confident that these mutations are indeed adaptive. Specifically, 
out of the 182 adaptive clones in which we identified putative adap-
tive mutations, 118 (~65%) harbour mutations in genes/pathways 
hit in multiple clones (Supplementary Table 3). Furthermore, 79 of 
these harbour mutations in genes/pathways independently hit five 
or more times (Table 1).

In general, within each evolutionary condition, beneficial muta-
tions were limited to a small number of genes that serve similar bio-
logical functions. At the same time, across evolutionary conditions, 
beneficial mutations tend to differ in their genetic bases (Table 1). 
For instance, we previously reported that the majority of adaptive 
mutants for Evo2D upregulated the RAS/PKA and TOR/Sch9 nutri-
ent-sensing pathways21, but we rarely recovered adaptive mutations 
in these pathways from other evolutionary conditions. By contrast, 
loss of function in SXM1 (also known as KAP108, which encodes a 
ß-karyopherin23,24) was the prevalent cause of adaptation in Evo1D. 
Karyopherins mediate transport through the nuclear pore. Sxm1 
functions as an importin and, in an sxm1∆ strain, the localization 
of Tpk2 (one of the catalytic subunits of protein kinase A (PKA)) to 

Table 1 | Genetic basis of adaptation and trade-offs

Evo1D Evo2D Evo5D Evo1/5D

CYR1 0 3 1 1

GPB2 0 13 0 0

RAS2 0 2 0 0

IRA1 0 39 0 0

IRA2 0 10 1 0

PDE2 0 11 0 0

TOR1 0 1 0 0

SCH9 0 1 0 0

SXM1 12 1 10 26

CHR11 DUP 0 4 (diploid) 11 1

FPK1 0 1 10 2

SSK1 0 0 7 0

SSK2 0 2 1 0

HOG1 0 0 1 0

RAS/PKA

TOR/Sch9

HOG

The number of clones carrying recurrent mutations within genes or pathways. These genes/pathways were independently mutated more than four times. Genes in the same pathway are grouped by the 
large parenthesis on the left.
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the nucleus in response to stress is abrogated25, and its chromatin 
association is abolished. Thus, in an adaptive strain from Evo1D 
carrying a loss-of-function mutation in SXM1 it is possible that 
Ras/PKA activity is diminished, potentially explaining the loss of 
fitness in respiration experienced by these mutants. While SXM1 
mutants were also observed in Evo5D, they were not the predomi-
nant mutant class. Rather, a wide variety of mutations were observed 
among Evo5D adaptive clones, including (1) 11 duplications of 
chromosome 11 (Chr11Dup), (2) ten independent loss-of-function 
mutations in FPK1 and (3) nine mutations in three components of 
the high-osmolarity glycerol (HOG) response pathway: SSK1, SSK2 
and HOG1. Given that Evo5D includes a long period of starvation, 
observation of Chr11 aneuploidy is consistent with previous find-
ings that aneuploidies can improve survival under extremely stress-
ful conditions26–28, although the underlying mechanism is unknown. 
FPK1 (a flippase activator) has previously been shown to increase 
viability in stationary phase29, which we experimentally confirmed 
(Supplementary Table 4). The genetic bases of adaptation among 
Evo1/5D clones were similar to those for Evo5D clones, with muta-
tions in SXM1 and FPK1 as well as duplication of Chr11.

Next, we examined the relationship between the identified 
genetic basis of adaptation and the resulting increases/decreases 
in performance (Fig. 3a–c). As stated above, in this study ‘perfor-
mance’ represents fitness change per hour in a particular growth 
phase rather than measurement of physiological traits (for example, 
growth rate) as it is commonly used. Due to population dynam-
ics, the genetic outcome of each evolutionary condition is biased 
towards the observation of mutations in genes with a large target 
size and high fitness. Even though we have sampled a large number 

of clones from multiple conditions, mutations that arise too infre-
quently or are insufficiently adaptive do not end up contributing to 
adaptation in the culture and thus are not sampled. For instance, 
the SXM1 mutants, predominant in Evo1D, have among the high-
est observed fermentation performance, at >6% h–1 (giving >96% 
fitness advantage over the ancestor over the full 16-h period of fer-
mentation under our conditions). This probably explains why nutri-
ent-sensing RAS/PKA and TOR/Sch9 pathway mutants, which have 
lower fermentation performance than the SXM1 mutants, were not 
observed in Evo1D. However, the high fermentation performances 
of SXM1 mutants come at a cost of reduced respiration performance 
(–2–3% h–1). This probably explains their near absence in Evo2D, 
given that the Evo2D condition contains a long period of respira-
tion. This allows the RAS/PKA and TOR/Sch9 mutants to dominate 
Evo2D conditions. Similarly, the most prevalent Evo2D RAS/PKA 
nutrient-sensing pathway mutants with the highest respiration per-
formance trade off strongly in stationary phase22, explaining why 
they were not observed in Evo5D. Finally, clones that are common 
in Evo5D, which contains all phases of the growth cycle, are the least 
likely to show decreased performance in any phases of the growth 
cycle. Indeed, Evo5D-specific mutations, such as Chr11 duplication 
and SSK1 mutation, show no obvious trade-offs but rather mod-
est improvements in one or more performances (Supplementary 
Fig. 1). Interestingly, Evo5D clones also include SXM1 mutants that 
show increased performance only in fermentation, with decreased 
performance in respiration and little change in stationary phase. 
In this case, their strong improvement in fermentation and lack of 
trade-off in stationary phase appear to compensate adequately for 
their reduced fitness in respiration.
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In summary, adaptation under these conditions is idiosyncratic 
yet predictable: the genetic basis of adaptation under a particular 
evolutionary condition tends to target a narrow, recurrent and thus 
a posteriori predictable set of genes. However, these gene targets are 
not shared across all environments, meaning that adaptation across 
conditions often relies on entirely different genetic pathways. This 
idiosyncratic nature explains the specific patterns of performance 
across conditions (Fig. 2d,e). While we detect clones that increase 
all performances, those that perform best in any one growth phase 
tend to trade off in performance in some other growth phase(s). 
This hints at the existence of evolutionary constraints preventing 
the emergence of adaptive clones that simultaneously maximize 
performance in all growth phases.

Identification of evolutionary constraints and delineation of 
Pareto fronts. We observed an absence of clones near the upper 
limits of either both fermentation and respiration performance, 
or both respiration and stationary performance (the large red dot 
in Fig. 3a,b,d,e). Thus, there is at least the appearance of an empty 
space in the upper right corner where these pairs of performances 
would be maximized. We used the convex hull algorithm to delin-
eate potential Pareto fronts that separate the short-term, evolu-
tionarily accessible space from the empty, putatively short-term 
inaccessible space above the front (grey curves in Fig. 3).

We first tested whether, given the marginal distributions of trait 
performance, the size of the empty space at the top right of those 
plots is surprisingly large (Methods). Under a null hypothesis of 
independence of performance, the observation of such large empty 
spaces is indeed unexpected (P < 1 × 10–3 for fermentation and 
respiration phases and P = 4 × 10–3 for respiration and stationary 
phases; Fig. 3d,e and Supplementary Fig. 2). By contrast, the size of 
the empty space between fermentation and stationary performance 
is not unexpected (Fig. 3f and Supplementary Fig. 2; P = 0.76).

The mutational target size of the optimal types is smaller than a 
single nucleotide. To further explore the absence of clones beyond 
the putative Pareto fronts, we determined the target size for potential 
single-step mutations that would give rise to maximum performance 
for fermentation and respiration, or respiration and stationary 
phases (marked by the large red dot in Fig. 3a,b,d,e). Mutants that 
could maximize two traits simultaneously would be more fit than 
the observed mutants, at least under certain evolutionary condi-
tions; thus, based on this increased fitness, such mutants, should 
they arise at a rate similar to that of the observed mutants, should be 
sampled frequently under those conditions. For example, mutants 
that improve fermentation and respiration simultaneously beyond 
the putative front should have a higher fitness than most of the 
sampled clones in Evo2D (Supplementary Fig. 3), as clones in this 
condition experience only fermentation and respiration. Likewise, 
clones that improve respiration and stationary phases beyond the 
putative front should have a high fitness in Evo5D (Supplementary 
Fig. 3), given that the majority of clones with high respiration or 
stationary performance also have a positive fermentation perfor-
mance. The fact that we did not observe any clones beyond the puta-
tive fronts suggests that the genomic mutational target size towards 
such extremely fit mutants located beyond the putative Pareto fronts 
must be smaller than that for the observed mutants. Furthermore, 
we demonstrated that our evolution experiments were not muta-
tion limited. Indeed, given the observed mutation rate of ~3 × 10–10 
per base pair (bp) per generation (1 bp is mutated into a specific 
nucleotide, A, T, C or G), the effective population size of ~6 × 108 
and the number of generations before sampling (~80), each base 
pair is expected to have been mutated into one specific nucleotide 
~15 times by the time of our sampling.

Next, we used a mathematical model to quantitatively assess the 
probability of sampling a single-step mutation with a given selec-

tion coefficient, s (Methods). Several factors determine the prob-
ability of sampling such a single-step mutation: (1) the rate at which 
a mutation occurs, (2) the probability of such a mutation surviv-
ing random drift and establishing in the population (approximately 
proportional to s) and (3) the exponential division rate after the 
mutation establishes (its cell number reaches roughly est, with t gen-
erations between establishment and sampling). With mutations 
entering the population at a fixed rate, the more fit a mutant is (the 
larger s is), the more likely that mutant establishes in the popula-
tion, the faster it divides and eventually the higher the frequency the 
mutant reaches by sampling time.

First, consider a gene with the same target size for adaptive muta-
tions as IRA1 (mutations in which were observed 39 times after 
sampling at cycle 11 of Evo2D21,22), but whose mutation results in 
a fitness benefit at the hypothetical optimal type with maximal fer-
mentation and respiration (the red dot in Fig. 3a,d). Such a hypo-
thetical mutant would have a fitness of ~2.56 per cycle in Evo2D, 
compared to ~1.64 per cycle for IRA1-nonsense mutations. If such 
a hypothetical gene exists, we would expect to observe mutations in 
this gene ~25,000 times more frequently than we observed muta-
tions in IRA1 in Evo2D (e(2.56 × 11)/e(1.64 × 11)). Thus, it is exceptionally 
unlikely that such a gene with a target size similar to that of IRA1 
does exist. Furthermore, if the target size for such a gene is just a 
single base pair, our mathematical model suggests that we would 
expect to see such a mutation between 84 and 99% of the time in 
our evolution experiments (Methods). Thus, we believe it is unlikely 
that there is even a single site in the genome of the ancestral strain 
that can be mutated to provide such a high fitness.

Similarly, the hypothetical optimal type that maximizes respira-
tion and stationary phase performance would have a fitness ben-
efit of ~2.98 per cycle in Evo5D (represented by the red dot in Fig. 
3b,e) (assuming a fermentation performance of zero). If a single site 
(1 bp) can be mutated to this hypothetical optimal type, we would 
expect to sample such a mutant between 88 and 98% of the time in 
Evo5D experiments. Thus, there is probably no single-step muta-
tion in the ancestral yeast genome that can simultaneously maxi-
mize the performance of both fermentation and respiration, or both 
respiration and stationary, to its highest observed level.

Discussion
Despite the fact that trade-offs have been widely assumed in stud-
ies of evolution, it is extremely challenging to formally establish 
their existence. Here, by sampling a large number of adaptive clones 
from a range of evolutionary conditions and measuring their per-
formance in three different growth phases, we were able to dem-
onstrate the existence of Pareto fronts between performance in the 
fermentation and respiration phases, and between the performance 
in the respiration and stationary phases. Furthermore, we were able 
to show that the ancestor must be behind these fronts because, for 
both pairs of traits, there were clones that were able to improve per-
formance in both traits simultaneously; indeed, some clones were 
able to improve performance in all three growth phases.

A large number of diversely selected adaptive clones is needed 
to delineate Pareto fronts. If the ancestor was on a front delin-
eated by two traits, characterization of that front using experimen-
tal evolution would be straightforward because no adaptive clones 
could improve both traits simultaneously—indeed, by definition, 
improvement of performance in one trait would lead to a loss of 
performance in the other. However, because the ancestor lies behind 
the fronts we identified, only by mapping a very large number of 
adaptive clones whose performance spans the trait space could 
we map the Pareto fronts. By randomly subsampling our data, we 
estimated that between roughly100 and 300 independent adaptive 
mutants are required to detect the Pareto fronts in our experiment 
(Methods). Furthermore, given that clones isolated from a particular  
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evolutionary condition—for example, Evo1D—tend to occupy 
a specific part of the trait space, clones from Evo1D, Evo2D and 
Evo5D together were required to detect the Pareto fronts.

Finally, having such a large number of adaptive clones enabled 
us to show that, for both of the identified Pareto fronts, there is no 
single mutation that can occur in the genome of the ancestral strain 
that would enable that strain to maximize performance in both 
traits. These fronts therefore constrain the evolutionarily accessible 
space over short timescales.

No Pareto front observed between fermentation and stationary 
phases. We were unable to identify a Pareto front between fer-
mentation and stationary phase performance, suggesting either an 
absence of trade-offs between these two traits or that single-step 
mutations provide insufficient performance improvement to reach 
a hypothetical Pareto front. However, this may also be due to experi-
mental limitations—specifically, clones selected under Evo5D expe-
rienced both fermentation and respiration before stationary phase. 
Thus, it is entirely possible that the maximum stationary phase per-
formance is higher than we observed, if clones with such a large 
stationary phase performance trade off strongly in fermentation or 
respiration. A longer stationary phase—for example, a 10-d serial 
transfer—may help select for such mutants and define a Pareto front 
between fermentation and stationary phase performance should 
one exist. Additionally, evolution in a non-fermentable carbon 
source, followed by a long stationary phase, may also enable selec-
tion of clones with high stationary phase performance that trade off 
strongly in fermentation.

The shape of Pareto fronts and nature of trade-offs. It was sug-
gested that the geometry of Pareto fronts will affect an organ-
ism’s evolvability, and whether generalists or specialists will tend 
to evolve30. For instance, a convex-shaped front allows for better 
evolvability and produces different optimal types based on the 
particular evolutionary condition, allowing for local adaptation 
(Fig. 4a). By contrast, a concave-shaped front leads to less evolv-
ability because, regardless of the importance of performance in 
each trait, one of the two most specialized types will always be the 
most fit (Fig. 4b).

Previous studies have used, for example, ecological data in phy-
toplankton31, interactions between phage and Escherichia coli32 and 
synthetic, E. coli-based systems33 to investigate the geometry of 
Pareto fronts and, in one case, it has been shown that an evolving 
ancestor is probably on a Pareto front12. However, no study has yet 
quantitatively defined a Pareto front or characterized its geometry in 
evolving populations where the ancestor lies behind the front, which 
is the case in most experimental evolutions. Here we identified not 
one, but two, convex-shaped fronts for two independent trade-offs 
under well-controlled selection pressures in our short-term evolu-
tion experiments. There are two important points to consider. First, 
we note that despite evolving under different transfer regimes that 
subjected cells to distinct selective pressures, each regime used the 
same growth medium with a defined glucose concentration. It will 
be important to determine whether even subtle variations in this 
growth medium would change the selective pressures and, in doing 
so, would alter or even eliminate the observed Pareto fronts. Second, 
it is possible that the shape of the Pareto front itself may change over 
the timescales of evolution34,35, and the way in which it might change 
will be informative about whether the observed front is due solely 
to a genetic constraint or, instead, whether there is an underlying 
intrinsic physiological constraint.

Over longer-term evolution, the space that is inaccessible in the 
short term may become populated and the shape change becomes a 
rectangle (Fig. 4c). This would imply that there is no physiological 
constraint between the two traits and that the observed Pareto front 
is purely due to a genetic constraint—that is, no clones with single 
mutations are able to occupy the seemingly inaccessible space, yet 
those with multiple mutation can. Alternatively, the front may either 
stay in place (Fig. 4d) or move forward but retain the same shape 
(Fig. 4e), always defining an inaccessible space. This scenario would 
suggest intrinsic physiological constraints whereby no single indi-
vidual could maximize performance in both traits simultaneously. A 
final possibility is that longer-term evolution may change the shape 
of the front from convex to concave (Fig. 4f), such that individuals 
with extreme performance in one or the other trait are the most fit 
depending upon the exact condition in which they are evolved.

The behaviour of clones containing multiple adaptive mutations 
should provide some insights. We observed three clones carrying 

Performance 1

P
er

fo
rm

an
ce

 2

Inaccessible

a b

Generalists P
er

fo
rm

an
ce

 2

Inaccessible

Specialists

Performance 1

Performance 1

P
er

fo
rm

an
ce

 2

c d e f

Fig. 4 | Pareto front geometry and potential changes over longer-term evolution. a,b, During evolution, the convex-shaped Pareto front (a) favours 
generalists, while the concave-shaped front (b) favours specialists. c–f, The current convex Pareto front (solid grey curve) can change into a rectangle (c), 
with the previously inaccessible space being populated, stay in place (d), move forward while keeping its shape (e) or change its shape over longer-term 
evolution (f). Potential Pareto fronts following longer-term evolution are depicted by orange dashed lines.
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two adaptive mutations, each in genes specific to different evolu-
tionary conditions. These clones harbour mutations in SXM1 and 
HOG1, SXM1 and SSK1, and SXM1 and CYR1, respectively. We 
observed that each of these double mutants is no closer to the front 
than the corresponding single mutants (Supplementary Fig. 4), sug-
gesting the front itself might be moderately stable. However, clearly 
both long-term and further evolution of already adaptive clones 
under various conditions are needed to test this.

Future prospects. Despite much focus on the study of trade-offs 
in ecology and evolution, rigorous demonstration of trade-offs has 
proved surprisingly difficult15,36. Furthermore, even when trade-offs 
have been demonstrated, the underlying causes typically remain 
elusive—the genetic bases of adaptation and trade-offs identified 
here provide additional potential targets for further investigation of 
whether the detected trade-offs are caused by intrinsic physiological 
constraints. Here we have shown that it is possible to use barcod-
ing and experimental evolution across a range of conditions to iso-
late a sufficiently large number of adaptive mutants that, together, 
can map the shape of the evolutionary accessible trait space in 
short-term evolution, from which trade-offs can be inferred. Our 
approach is generic and can be used to study trade-offs between 
multiple traits, including ecologically relevant traits such as the abil-
ity to sporulate or undergo mating, and can be performed with dif-
ferent founding strains and species. Such studies hold promise in 
helping us to understand the shape of trade-offs among multiple 
traits, in both pairs and higher dimensions.

Methods
Founding populations and experimental evolution. Barcoded yeast populations. 
Barcoded yeast populations were constructed as in ref. 20. However, whereas those 
workers used only one landing-pad yeast strain (SHA185), we used multiple 
landing-pad yeast strains with each strain carrying a unique, condition-specific 
barcode. Next, a high-complexity plasmid library was introduced into each 
landing-pad strain through transformation; correct integrants were selected 
for uracil prototrophy20. These transformants contain both a low-complexity, 
condition-specific barcode and a high-complexity, lineage-tracking barcode. 
Three barcoded yeast populations with distinct condition-specific barcodes were 
constructed. Each barcoded yeast population includes around half a million unique 
transformants. These three barcoded yeast populations were evolved under Evo1D, 
Evo5D and Evo1/5D, respectively.

Yeast growth media and growth cycle. All cultures were grown in 100 ml of M3 
medium20 (5× Delft medium with 4% ammonium sulfate and 1.5% dextrose) in 
500-ml Delong flasks (Bellco) at 30 °C and 223 r.p.m. This culture condition is 
referred to as our standard culture condition.

Yeast cells go through different growth phases when growing under a glucose-
limited condition—lag, fermentation, respiration and stationary. Based on our 
previous study22, with 5 × 107 cells inoculated into our standard culture condition, 
cells experience lag phase for ~4 h, fermentation for ~16 h, respiration for ~40 h 
and stationary phase thereafter22. Wild-type cultures reach a saturation cell number 
~1.7 × 108 ml–1, and thus the final population size is ~1.7 × 1010. We note that these 
parameters can change somewhat under different growth conditions. For example, 
cells experience a longer lag phase under Evo5D because they entered stationary 
phase in the previous growth cycle. Such variations are not taken into account 
in our analyses. Furthermore, these parameters are variable across different 
genotypes. For instance, the tested IRA1-nonsense mutation saturated around 
1.1 × 108 ml–1 after 2-d growth22.

Serial batch transfer during evolution. The barcoded yeast populations were evolved 
by serial batch culture in M3 medium. Under Evo1D, bottlenecks were performed 
by the addition of 7 × 107 cells of the culture from the previous growth cycle to 
fresh media; cells were grown for 24 h between each bottleneck. Cells were highly 
viable (close to 100%) after 1 d of growth. Cell counts were performed at each 
bottleneck to estimate the generation time. Cultures reached ~9 × 107 cells ml–1, 
with a final population size ~9 × 109. Thus, cells went through approximately seven 
generations during each transfer in Evo1D (log2(9 × 109/7 × 107) = 7 generations). 
Populations were evolved for up to 25 growth cycles (~175 generations).

Under Evo5D, bottlenecks were performed every 5 d. Cultures reached 
~1.25 × 108 cells ml–1, with a final population size ~1.25 × 1010. Cell viability 
decreased during the stationary phase. To avoid strong bottleneck drift, cell 
viability was estimated at each bottleneck and 7 × 107 viable cells were inoculated 
into the next serial transfer. Viability was estimated by counting colony-forming 

units on yeast peptone dextrose (YPD) plates and then dividing their number by 
that of the cells plated. Cells went through ~7.5 generations during each transfer in 
Evo5D. Cells were evolved up to 16 cycles (~120 generations).

Under Evo1/5D, cells were bottlenecked every 1 and 5 d, alternating; 7 × 107 
viable cells were inoculated at each bottleneck. Similarly, cells went through 
roughly seven generations during 1-d transfer and roughly 7.5 generations during 
5-d transfer. Cells were evolved up to 23 cycles by alternating between 1- and 5-d 
transfers (~166 generations).

Two replicates were conducted under each evolutionary condition. At the end 
of each transfer, 2 ml cell culture of evolution was mixed with 1 ml 40% glycerol, 
aliquoted into two Eppendorf tubes and stored at −80 °C. The remainder of the 
cell culture (>95 ml, besides a small amount used to inoculate the next cycle) 
was centrifuged, then the cell pellet was resuspended in 5 ml sorbitol solution 
(0.9 M sorbitol, 0.1 M Tris-HCL pH 7.5, 0.1 M EDTA pH 8.0), aliquoted into 2-ml 
Eppendorf tubes and stored at −20 °C for genomic extraction.

In addition, Evo2D evolution was conducted as in ref. 20, where bottleneck 
was performed by the addition of 400 µl (~5 × 107 cells) to fresh media. Cells went 
through around eight generations per cycle.

Tracking lineage dynamics during evolution. Library preparation and sequencing. 
To track changes in lineage frequency over the course of evolution, cells collected 
at the end of every three transfers under Evo1D, Evo5D and Evo1/5D were used 
for genomic DNA extraction. Genome extraction and PCR amplification of the 
barcode region were conducted as in ref. 21. Amplicons were sequenced on Illumina 
HiSeq 4000 (2 × 101 paired-end). Data for Evo2D can be found in ref. 20. A perfect 
sequencing read should follow this DNA s eq ue nce: N NN NN NN NX XX XX TT-
AA TA TG GA CT AA AG GA GG CT TT TG TC GACGGATCCGATATCGGTACC 
(    +2       6   -    bp l in ea ge b ar co de+)   A  T A  AC  T T  CG  T A  TA  A T  GT  A T  GC  TA TACGAAGTTAT 
(+26-bp condition barcode+)  G GTACCGATATCAGATCTAAGCTTGAATTCGA
TXXXXXXXXXNNNNNNNN.

The Ns in the sequence are random nucleotides, and are used as unique 
molecular identifiers (UMIs) in the downstream analysis to remove skew in the 
counts caused by PCR jack-potting20. The Xs correspond to multiplexing tags, 
which allow distinguishing between different samples when loaded on the same 
sequencing flow cell20.

Barcode counts. Sequencing reads, with 17 bp (including the UMIs and 
multiplexing tags) on both the 5′ and 3′ ends removed, were first aligned to the 
reference barcode region using Bowtie2. Based on this alignment, both condition 
and lineage barcodes were extracted. Next, the UMIs, multiplexing tags and 
barcodes were re-associated for each pair of reads. Reads were split into different 
files based on their multiplexing tags, representing the sample from which the 
reads came. Last, reads from the same sample were clustered using Bartender37 with 
Hamming distance 2 and seed length 8. The final output includes both barcode 
sequences and counts of each lineage. Each lineage is represented by a unique 
combination of condition and lineage barcodes. Reads with the same combination 
of UMI, multiplexing tags and barcodes were counted as one read because they 
were probably caused by PCR jack-potting. An extra round of clustering was 
conducted using barcode combinations identified by Bartender to further cluster 
barcodes with ≤2 Hamming distance. On average, each sample has ~1.3 million 
high-quality reads. For each evolution replicate, lineages with fewer than ten 
counts across all time points and lineages present at fewer than three sequenced 
time points were filtered out. Barcode counts over the course of evolution can be 
found in Supplementary Table 1.

Isolation of clones from evolution. Isolation of evolved clones from evolutionary 
conditions. Based on population dynamics, yeast clones were isolated from frozen 
samples of Evo1D, Evo5D and Evo1/5D at cycle 11. Frozen stock (~50 µl,containing 
~3.5 × 106 cells) was diluted into 500 µl PBS plus 1 µl propidium iodide and used 
for flow cytometry sorting. Single cells were sorted into 96-well plates with 100 µl 
YPD medium in each well. Sixteen plates of cells (~1,500 cells) were sorted for 
each evolutionary condition with eight plates from each replicate (48 plates in total, 
sorted from Evo1D, Evo5D and Evo1/5D). Sorted cells were grown at 30 °C for 3 d 
without shaking, and reached saturation by day 3. Saturated cell culture (~5 µl) was 
removed from each well and inoculated into a different 96-well plate, with 100 µl 
fresh YPD medium in each well. These replicated plates were grown at 30 °C for 2 d 
without shaking to reach saturation, and used for subsequent ploidy and barcode 
identification. The remainder of the saturated cell culture was mixed with 100 µl 
50% glycerol and stored at −80 °C.

Ploidy test. A high-throughput ploidy test was developed using the drug benomyl21. 
Saturated cultures from the 48 replicated 96-well plates were mixed and pinned 
onto YPD + 20 μg ml–1 benomyl (in DMSO) on rectangular agar plates using a 
multi-pronged pinner, grown at 25 °C for 48 h and then imaged. Under these 
conditions, diploid growth was strongly inhibited by benomyl but haploid growth 
was less affected.

DNA barcode identification by Metagrid. Saturated cell culture (20 µl) was removed 
from each well of the replicated plates into 96-well PCR plates. Cells were lysed by 
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incubation at 95 °C for 15 min. Lysed cell culture (5 µl) was used to PCR amplify 
the DNA barcode region. To reduce the cost of Sanger sequencing to ~4,600 clones, 
a Metagrid approach was developed. Seventy-two forward and 64 reverse primers 
were synthesized, with each primer carrying an 8-bp unique multiplexing tag (Ns 
in the primer sequence). Each PCR well was coded by a unique combination of 
forward and reverse multiplexing tags. Two-step PCR amplification was conducted 
here, with the first step using multiplexed primers and the second using standard 
Illumina paired-end ligation primers (PE1 and PE2). PCR products from all 
48 plates were pooled and sequenced using Illumina NextSeq (2 × 150 paired-ends):
•	 forward primer of first-step PCR: ACACTCTTTCCCTACAC-

GACGCTCTTCCGATCTNNNNNNNNTTAATATGGACTAAAGGAG-
GCTTTT

•	 reverse primer of first-step PCR: CTCGGCATTCCTGCTGAACCGCTCTTC-
CGATCTNNNNNNNNTCGAATTCAAGCTTAGATCTGATA

Regular expressions that match DNA sequences flanking multiplexing tags of 
primer and clone barcodes were used to extract multiplexing tags and barcodes. A 
map between clone DNA barcodes and their physical position on the 96-well plates 
was constructed based on multiplexing tags. The number of clones carrying unique 
barcodes is lower than that of clones isolated, due to the lack of growth in a small 
number of wells and, more importantly, to the high frequency of a few adaptive 
clones—a large number of isolated clones carrying the same barcodes; 124, 166 
and 397 unique barcodes were identified from Evo1D, Evo5D and Evo1/5D, 
respectively.

High-throughput fitness measurements. Pool of clones for fitness measurements. 
Isolated clones with a unique barcode were pooled for high-throughput fitness 
assay. Note that some barcodes were present in both haploid and diploid clones—
for those barcodes, only the former were pooled for fitness assay. Clones with a 
unique barcode were hand-picked from previously frozen stock and re-arrayed 
onto a set of 96-deep-well plates with 700 µl YPD medium in each well. Cells were 
grown at 30 °C for 2 d to reach saturation without shaking; 500 µl of 50% glycerol 
was added to each well using a multi-channel pipette, then 1 ml of the mixture 
from each well was pooled in a container. The pooled cell culture was mixed well 
and aliquoted into 2-ml Eppendorf tubes, which were then stored at 80 °C for 
future fitness measurements.

Fitness measurement conditions. We measured clone fitness under four conditions: 
1-, 2-, 3- and 5-d serial batch culture conditions (Fit1D, Fit2D, Fit3D and Fit5D, 
respectively). These four conditions are the same, except for the length of the 
growth cycle. From these, 1-, 2- and 5-d serial batch culture conditions are the 
same as Evo1D, Evo2D and Evo5D evolutionary conditions. Note that the fitness 
of Evo2D clones was measured in ref. 22. Clones isolated from Evo1D, Evo5D and 
Evo1/5D were measured in this study and are analysed below. Note that all data 
reported in this section can be found in Supplementary Table 2.

Pre-culture. A tube of pooled cell culture was removed from freezing at −80 °C 
and thawed at room temperature. Pooled cell culture (1 ml) was inoculated into 
15 ml fresh M3 medium contained in a 500-ml Delong flask and grown at 30 °C 
with shaking at 223 r.p.m. overnight for cell propagation. Overnight cell culture 
(400 µl) was inoculated into 100 ml fresh M3 medium (4×) and pre-cultured under 
standard conditions.

An ancestral clone carrying a restriction site in the barcode region was 
previously constructed and used to compete with evolved clones for fitness 
measurements21. This clone was streaked-out from freezer stock onto M3 agar 
plates and grown for 2 d until colonies became visible. A single colony was 
inoculated into 3 ml of M3 medium and grown for 48 h (30 °C roller drum). After 
saturation, 400 µl was used to inoculate pre-cultures (100 ml M3 medium in 500-ml 
Delong flasks, 223 r.p.m., 30 °C). As in the pooled cell culture, four pre-cultures 
were prepared.

The pooled pre-culture and ancestor pre-culture were acclimated for the 
same cycle length as that in the fitness measurement condition. For instance, 
pre-cultures were grown for 1 d before mixing and assay under the 1-d fitness 
measurement condition.

High-throughput competition. Fitness assays were conducted by mixing the pooled 
pre-culture with the ancestor pre-culture in a 1/9 ratio (time 0) and growing 
this mixed culture for four successive growth cycles (time points 1, 2, 3 and 4). 
In Fit1D, at the end of each cycle, 450 µl cell culture was inoculated into 100 ml 
fresh medium to start the next cycle. In Fit2D, Fit3D and Fit5D, at the end of 
each cycle 400 µl cell culture was inoculated. Cells reached a lower cell number 
after 1-d growth compared to after 2-, 3- and 5-d. Thus, we inoculated a larger 
volume to ensure that the number of cells inoculated was consistent across fitness 
measurement conditions. In addition, we inoculated 450 µl to ensure that the cell 
culture was close to saturation after 1-d growth and thus yielded sufficient cells 
for downstream analyses. Cells were collected at time 0, and at the end of each of 
the four growth cycles. A cell pellet from each sample was resuspended in 5 ml 
sorbitol solution (0.9 M sorbitol, 0.1 M Tris-HCL pH 7.5, 0.1 M EDTA pH 8.0), 
aliquoted into 2-ml Eppendorf tubes and stored at −20 °C. Three replicates were 

performed under each fitness assay condition. Genome extraction, barcode region 
amplification and Illumina sequencing were conducted for each sample.

Library preparation of high-throughput fitness assays. Genomic DNA was extracted 
using the following steps: (1) removal of collected cells from freezing at −20 °C 
and thawing at room temperature; (2) cells spun down and washed with water; (3) 
cells resuspended in 400 µl buffer (0.9 M sorbitol, 50 mM sodium phosphate pH 7.5, 
240 µg ml–1 zymolase, 14 mM ß-mercaptoethanol) and incubated at 37 °C for 
30 min; (4) addition of 40 µl 0.5 M EDTA and vortexing; (5) addition of 40 µl 10% 
SDS and vortexing; (6) addition of 56 µl 20 mg ml–1 proteinase K (Life Technologies, 
No. 25530–015), very brief vortexing and incubation at 65 °C for 30 min; (7) 
incubation of samples on ice for 5 min; (8) addition of 200 µl 5 M potassium acetate, 
shaking and incubation on ice for 30 min; (9) spinning for 10 min, transfer to 
supernatant in a new tube with 750 µl ispropanol and resting on ice for 5 min; (10) 
spinning down for 10 min and washing twice with 70% ethanol; (11) resuspension 
in 50 µl 10 mM Tris pH 7.5 (left on bench overnight if pellet not resuspended fully); 
and (12) addition of 0.5 µl 20 mg ml–1 RNase A and incubation at 65 °C for 30 min.

Two-step PCR was used to amplify the barcode region (see ref. 21 for primer 
details). The first-step PCR was conducted using 6 µg genomic DNA and separated 
into six 50 µl reactions:
•	 OneTaq 2× mix,150 µl
•	 Forward primer 5 uM, 3 µl
•	 Reverse primer 5 uM, 3 µl
•	 Template, 6 µg
•	 MgCl2 50 mM, 12 µl
•	 H20, add up to 300 µl
•	 PCR programme for first-step PCR:
•	 1 × 94 °C, 10 min
•	 3 × 94 °C, 3 min
•	 55 °C, 1 min
•	 68 °C, 1 min
•	 1 × 68 °C, 1 min
•	 4 °C, infinite time

We then performed PCR clean-up following the QIAquick PCR purification 
protocol (six PCR reactions pooled into one column), with elution into 30 µl H2O.

Second-step PCR was completed in one reaction using Herculase II fusion 
DNA polymerase (Agilent, No. 600677):
•	 Buffer, 10 µl
•	 dNTP 100 µM, 0.5 µl
•	 Herculase, 0.5 µl
•	 PE1 10 µM, 1.25 µl
•	 PE2 10 µM, 1.25 µl
•	 Template, 30 µl
•	 H2O, 6.5 µl

PCR programme for second-step PCR:
•	 1 × 98 °C, 2 min
•	 20 × 98 °C, 10 s
•	 69 °C, 20 s
•	 72 °C, 30 s
•	 1 × 72 °C, 1 min
•	 4 °C infinite time

Fitness estimation. The number of DNA barcodes was tracked by Illumina 
sequencing (Illumina NextSeq), which was then used to estimate lineage frequency 
in the population as a whole, as previously described21,22. In this study, time points 
0, 1, 2 and 3 were used for fitness estimates under Fit1D, Fit2D and Fit3D; time 
points 0, 1, 2, 3 and 4 were used for fitness estimates under Fit5D. The source 
code for computing these fitness estimates can be found at https://github.com/
barcoding-bfa/fitness-assay-python. First, we input barcode counts to the script. 
After the first run, the script output barcodes that were likely to be neutral. During 
the second run, we input both the barcode counts and a list of neutral barcodes 
estimated from the first run. Fitness estimates from the second run were used 
for further analysis. Final fitness estimates were calculated by inverse variance 
weighting of estimates from all three replicates. Barcodes identified in these fitness 
assays were mapped back to barcodes identified in Metagrid. Thus, for each unique 
barcode, we know the fitness values under all fitness measurement conditions, 
its physical position in a 96-well plate in frozen stock, and the associated ploidy. 
Note that the physical position of each barcode is required for picking clones for 
genome-wide sequencing. In sum, 661 unique barcodes had confidently called 
ploidy and were successfully identified from our fitness assays. Out of these 661, 
644 had high-quality fitness values under every fitness assay condition and were 
used for further analysis.

Classification of clones. The 644 lineages with high-quality fitness measurements 
were classified into four groups, based on their ploidy and fitness: neutral haploids, 
adaptive haploids, diploids presumed to have no additional adaptive mutations 
(‘pure’ diploids) and diploids with additional adaptive mutations (high-fitness 
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diploids; see ref. 22 for details). Briefly, adaptive haploids were defined as lineages 
with low probability (P < 1e–3) of having log fitness of 0 or less in at least two 
conditions; high-fitness diploids were defined as diploid lineages with additional 
adaptive mutations that had low probability (P < 1e–3) of having fitness less than 
the mean fitness of the diploid class in at least one condition. The mean fitness of 
the diploid population was calculated using inverse variance weighting. In total, 
254 adaptive haploids, 66 high-fitness diploids, 218 neutral haploids and 106 pure 
diploids were characterized among clones isolated from Evo1D, Evo5D and 
Evo1/5D. See ref. 22 for classification of Evo2D clones.

Quantification of performance in growth phases. Fitness change per hour 
was used as the measurement of lineage performance in the different growth 
phases. Hourly respiration performance was calculated by subtracting Fit1D 
from Fit2D measurements and dividing by 24 h (because, compared to Fit1D, 
clones experienced 24 h of extra respiration in Fit2D while keeping the lag 
and fermentation phases roughly the same). Fit1D almost directly measures 
the performance in fermentation but contains ~4 h of respiration per transfer. 
Therefore, using the above estimates of hourly respiration performance, we 
subtracted the expected fitness change in the extra 4 h of respiration from Fit1D 
measurements. We then divided the difference by 16 h of fermentation to estimate 
hourly fermentation performance. Last, hourly stationary phase performance 
was calculated by subtracting Fit3D from Fit5D measurements and dividing the 
difference by 48 h of stationary phase. The same quantification was performed for 
Evo2D clones, using their fitness measured under 1-, 2-, 3- and 5-d serial transfer 
conditions22. See ref. 22 for statistical details.

Genome-wide sequencing and variant calling. Genome-wide sequencing 
library preparation. Clones selected for sequencing were grown in 500 µl YPD on 
96-deep-well plates for 2 d at 30 °C without shaking, then 400 µl of cell culture was 
collected from each well for DNA extraction. Genomic DNA was prepared using 
the Invitrogen PureLink Pro 96 Genomic DNA Kit (No. K1821-04A) in a 96-well 
format. Libraries were constructed and multiplexed using Nextera technology with 
the protocol described in ref. 38. Samples were sequenced with 2 × 150 Illumina 
NextSeq paired-end sequencing technology. We sequenced 179 adaptive haploids, 
20 high-fitness diploids, eight neutral haploids and nine pure diploids, with average 
coverage >50 for both haploids and diploids. Note that only clones isolated from 
Evo1D, Evo5D and Evo1/5D were sequenced and analysed in this study and 
reported in this section. See refs. 21,]22 for details on Evo2D clones.

FASTQ processing. The source code for variants calling and annotation can be 
found at https://github.com/liyuping927/DNAscope-variants-calling (sections 
7.2–7.6).

For each sample, we received two fastq files, one for each read of the paired-end 
sequencing (fastqR1 and fastqR2). Using cutadapt v.1.16 (ref. 39), we trimmed the 
first 10 bp of each read (-u 10), low-quality ends (-q 30) and any adaptor sequences 
(-a). After trimming, sequences of length <12 bp (–minimum-length 12) were 
discarded. Reads were mapped using bwa40 to Saccharomyces cerevisiae S288C 
reference genome R64-1-1 (https://downloads.yeastgenome.org/sequence/S288C_
reference/genome_releases/) and sorted using Sentieon Genomic Tools v.201711.02 
(ref. 41). Note that bwa used here is the default version incorporated in Sentieon 
Genomic Tools. Duplicates were removed using the sorted BAM file. Local 
realignment around indels was performed using the de-duped BAM file. Last, base 
quality score recalibration was performed using the realigned BAM file.

Single-nucleotide polymorphism and small indel variant calling. Single-nucleotide 
polymorphism (SNP) and small indel variants were called using the DNAscope 
algorithm (Sentieon Genomic Software) with the realigned BAM file and the 
output table of the base quality score recalibration. The parameter ploidy is 
assigned as 1 for haploids and 2 for diploids.

Structural variant calling. First, a DNAscope algorithm detected the break-end 
variant type (BND). The parameter ploidy was assigned as 1 for haploids and 2 
for diploids. Second, SVSolver algorithm processed BND and output structural 
variants to a VCF file.

Copy number variant calling. First, recalibrated BAM files were created using 
previously generated aligned BAM files and quality score calibration tables. 
Second, the panel of normal (PON) was created using recalibrated BAM files. By 
changing the window size of the bed file, the window size used to call copy number 
variants (CNVs) was varied. Window sizes (200 bp and 10 kb) were applied in this 
study. The PON files were created only with the sequencing of haploids. Third, for 
each strain, the CNVs were called using the strain’s recalibrated BAM file, the bed 
file and the PON file.

Variant annotation. VCF files from SNP and small indel variant calling and 
structural variant calling were further annotated using snpEff42 (http://snpeff.
sourceforge.net/download.html). For variants in coding regions, SNPSift was 
used to extract the first annotation of each variant, which is the annotation with 
the largest effect. For variants in non-coding regions, the nearest gene of each 
variant was extracted. Thus, the non-coding variants were annotated as either the 
upstream or downstream of the nearest genes.

Filtering SNPs, small indels and structural variants. First, mitochondrial variants 
were discarded. Second, background variants, present in all strains, were removed. 
Variants present in more than ten clones isolated from more than one evolutionary 
condition were also considered as background variants and discarded. Third, any 
variants in genes FLO1 and FLO9 were filtered out due to poor alignment in both 
genomic regions. Fourth, variants with a quality score <200 were filtered out. Note 
that if a variant was present in multiple clones, the alignment of this variant was 
manually checked regardless of its quality score and a decision was made based 
on all clones carrying this variant. Thus, a variant with a quality score <200 might 
not be filtered out if the same variant contained in other clones was shown to be 
authentic. Similarly, a variant with a quality score >200 might be filtered out if the 
same variant was shown to be bogus in other clones. Only six out of ~500 variants 
had a quality score <200. Last, by manually checking BAM files after alignment, 
variants within repetitive regions and regions with poor alignment were filtered 
out. In addition, if a variant was present in multiple clones and these clones carried 
a same-condition barcode, that variant was likely to have pre-existing mutations 
introduced during the barcoded population construction. These pre-existing 
mutations can be causative mutations and thus were retained in our analysis.

Filtering CNVs. Our DNA extraction and sequencing protocols resulted in an 
unevenly distributed and relatively low coverage of short chromosomes, including 
chromosomes I, III and VI. Thus, CNVs associated with these three chromosomes 
were not considered. For both haploids and diploids, CNVs generated with a 10-kb 
window size were used to identify large duplications and deletions, combined 
with visual inspection of coverage plots. These variants were further confirmed by 
CNVs generated with a 200-bp window size.

Detailed information on mutations. In total, 179 adaptive haploids, 20 high-
fitness diploids, eight neutral haploids and nine pure diploids from Evo1D, 
Evo5D and Evo1/5D were sequenced in this study, with 163 adaptive haploids, 
19 high-fitness diploids, eight neutral haploids and seven pure diploids having 
variants identified. All detailed information on these variants can be found in 
Supplementary Table 3.

Pre-existing mutations were identified as (1) those in the same gene that are 
the exact same alleles, and (2) clones carrying identical mutations in the same 
gene having the same condition barcodes. Thus, these pre-existing mutations were 
probably introduced during the construction of barcoded yeast populations. All 
eight sequenced neutral haploids and one out of nine sequenced pure diploids 
harbour chromosome IX duplication, suggesting that this duplication is not an 
adaptative event. Since lineages with chromosome IX duplications have different 
condition barcodes, it is likely that this duplication occurred independently during 
population construction. In this work, chromosome IX duplications are treated 
as pre-existing mutations. Note that even though the same pre-existing mutation 
appears in multiple clones, it is regarded as one independent adaptive event. 
Pre-existing mutations are not necessarily non-adaptive. For instance, despite 
pre-existing SSK1 mutations, this mutation also occurred independently during 
evolution and thus is very likely to be adaptive. In addition, genes LSM2, NUT2, 
TFB3, tL(GAG)G and VOA1 harbour both pre-existing mutations and those that 
occurred independently during evolution.

Lineages carrying mutations in genes SSK1, SSK2 or HOG1 are HOG pathway 
mutants. Lineages carrying mutations in Ras/PKA or TOR/Sch9 pathway genes 
are referred to as nutrient response pathway mutants in this work: RAS2, GPB1, 
GPB2, PDE2, IRA1, CYR1, TFS1 and YAK1 are involved in the Ras/PKA signalling 
pathway while SCH9, TOR1, KOG1 and MDS3 are involved in the TOR/Sch9 
signalling pathway.

Recurrent mutations within genes or pathways are highly unlikely under neutral 
evolution and are a hallmark of adaptive mutations. Genes or pathways that were 
independently mutated five times or more are reported in Table 1, including the 
duplication of chromosome XI which appeared more than five times. The full list of 
genes that were independently hit more than once can be found in Supplementary 
Table 3. None of these multi-hit genes/pathways was mutated in the neutral 
haploids and pure diploids sequenced in this study. By contrast, these multi-hit 
genes/pathways were mutated in 118 out of 182 adaptive clones with identified 
variants (~65%). In addition, 79 out of 182 adaptive clones (~43%) harbour 
mutations in genes/pathways that were independently hit more than five times.

Three lineages carry mutations in coding regions of two genes listed in Table 1,  
offering an opportunity to study epistasis among these beneficial mutations. 
Specifically, these three lineages carry mutations in coding regions of SXM1 and 
SSK1, SXM1 and HOG1 and SXM1 and CYR1, respectively (Supplementary Fig. 4).  
These three lineages are not coloured in Fig. 3a–c. In addition, diploids with 
chromosome XI duplication and clones with SSK2 mutations from Evo2D are not 
coloured in Fig. 3a–c. If a mutant harbours more than one mutation, providing 
that one, and only one, of the mutations is located in the genes listed in Table 1, it is 
classified as a mutant carrying mutations in those genes (Supplementary Fig. 1).

Identification and fitting of Pareto optimality fronts. The fermentation, 
respiration and stationary performance data of adaptive haploids and high-fitness 
diploids from Evo1D, Evo2D, Evo5D and Evo1/5D were used for the following 
analysis. The ‘chull’ function in R was used to identify the smallest set of points 
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(the convex set) that, when connected, enclosed the remaining points. By 
connecting the two points with the largest value on x or y, a line was formed. Out 
of the convex set, points either on or above this line were used to depict the Pareto 
front. Six, five and three points were identified to depict the Pareto front between 
the performances of fermentation and respiration, respiration and stationary, and 
fermentation and stationary phases, respectively.

With known points on Pareto fronts, regression was used looking for a curve 
that fit the front. The polynomial fit was evaluated using the Bayesian information 
criterion (BIC) and the adjusted R2, where lower BIC and higher R2 are considered 
a better fit. Both criteria include a penalty term for the number of parameters in 
the model, to avoid overfitting. Specifically, first- to third-degree polynomials were 
applied to the front between fermentation and respiration performance. We found 
the values of BIC to be −27, −40 and −43 and adjusted R2 of 0.64, 0.96 and 0.97 
for first-, second- and third-degree polynomial fit, respectively. The first-degree 
polynomial fit was rejected due to its poor BIC and adjusted R2. Because the third-
degree polynomial fit provides only a marginally better fit than the second, we 
opted for the simpler model. Specifically, the second-degree polynomial fit used 
is respiration = 0.047 + 0.746 × fermentation − 20.306 × fermentation2. Similarly, 
first- to third-degree polynomials were applied to the front between respiration 
and stationary phase performance. BIC −33, −66 and −64 and adjusted R2 0.81, 
1.0 and 1.0 were observed for first-, second- and third-degree polynomial fit, 
respectively. Both BIC and adjusted R2 values demonstrate that second-degree 
polynomial fit offers the best fit. Specifically, the second-degree polynomial fit 
respiration = 0.040 – 0.997 × stationary phase − 45.650 × (stationary phase)2 was 
used. The second derivatives of both curves are negative, indicating that both 
are convex. Due to the small number of points on the front (three) between 
fermentation and stationary phase performance, we were unable to compare the 
first-degree polynomial fit to the second.

The inaccessible space is not generated by chance. We tested whether the 
observed Pareto fronts and evolutionary inaccessible spaces were generated by 
random chance. For each pair of performances, the evolutionary inaccessible space 
was defined as the empty space between the Pareto front (identified by the convex 
hull algorithm) and the upper limits of both performances. The null hypothesis 
assumes that a pair of performances are independent from each other.

The error of the fitness estimate is roughly Gaussian (see supplementary 
information in ref. 21). Thus, for each fitness measurement, we resampled the 
fitness from a normal distribution with the estimated mean and standard deviation 
(resampling with error). Performances were recalculated from the resampled 
fitness. We then sampled the tested performances independently with replacement 
504 times (the total number of adaptive clones from all four evolutionary 
conditions; resampled with permutation) from the recalculated performances, and 
calculated the amount of empty space under the null hypothesis.

We repeated the above test 1,000 times and calculated, under the null 
hypothesis, the chance of observing an empty space equal to or larger than 
that generated by our real data (Supplementary Fig. 2). For fermentation and 
respiration performance, none of the permutations had an empty space as  
large as that in the real data (P < 0.001). For respiration and stationary 
performance, four of the permutations had an empty space as large as that in  
the real data (P = 0.004). By contrast, for fermentation and stationary performance, 
when we sampled the marginal distributions the empty space we observed in 
the real data sits within the distribution of the empty spaces generated by the 
permutations; 761 of the permutations had an empty space larger than that 
observed in the real data (P = 0.76).

We then calculated the minimum number of clones needed to define the 
inaccessible space. By random sampling of current adaptive clones, we concluded 
that between 80 and 300 clones are required to confidently (P ≤ 0.01) define 
the inaccessible space between fermentation and respiration performance, and 
between respiration and stationary phase performance, respectively.

Mathematical model used to calculate the probability of not sampling optimal 
types. Equations. By knowing the selection coefficient (s per generation) of a 
particular adaptive event, the bottleneck population size (Nb), the mutation rate 
(μ) and the effective variance of cell division per generation (2c), we can estimate 
the density distribution of establishment time (τ) of this adaptive event (equation 7 
in supplementary information of ref. 20). This density distribution represents, for a 
given time point, the probability that an adaptive event occurs and rises to c/s cells 
to avoid drift (see ref. 20 for details):

pðτÞdτ ¼ s=Γ Nb ´ μ=cð Þ ´ exp �Nb ´ μ ´ s=cð Þ ´ τ � exp �s ´ τð Þ½ 

After establishment, clones grow exponentially (cell number n = c/s × exp[s × (t – τ)] 
with a given establishment time τ at a sampled time t). Thus, the frequency of 
the adaptive event (f) at a sampled time (t) can be estimated using the density 
distribution of establishment time:

f ¼
R t
0dτ ´

s
ΓðNb ´ μ=cÞ

´ exp �Nb ´ μ ´ s=cð Þ ´ τ � expð�s ´ τÞ½ 
´ c

Nb ´ s
´ exp s ´ ðt � τÞ½ 

Lastly, by isolating I clones from the evolutionary experiment, we can estimate 
the probability of sampling this adaptive event:

Probability sampling this adaptive eventð Þ ¼ 1� B x ¼ 0; size ¼ I; p ¼ fð Þ

where B(x = 0, size = I, p = f) represents a binomial sampling process—given 
the probability of sampling the adaptive event (p = f) and the number of clones 
sampled (size = I)—the probability of missing this adaptive clone (x = 0) during 
sampling. We use this binomial sampling because the number of adaptive clones 
sampled is not important in the calculation. Instead, whether or not the adaptive 
clone is sampled is more important.

Combining these three steps, we can calculate the probability to sample this 
particular adaptive event in one equation:

Probability sampling the adaptive eventð Þ ¼
R t
0dτ ´

s
ΓðNb ´ μ=cÞ

´ exp �Nb ´ μ ´ s=cð Þ ´ τ � expð�s ´ τÞ½ 
´ 1� B x ¼ 0; size ¼ I; p ¼ c

Nb ´ s
´ exp s ´ ðt � τÞ½ 

h i 

Parameters. In our experiment, during each serial transfer cells are bottlenecked 
and then raised for T ≈ 8 generations. As described in the supplementary 
information in ref. 20, the probability of the adaptive mutation arising during the 
first division of the cycle and surviving the bottleneck ≈ Nb × μ. It is twice as likely 
to occur during the second division, but half as likely to survive the bottleneck, 
so the probability of a mutation entering at some point in the cycle and being 
present at a certain cell number once it is transferred to the next cycle is largely 
independent of where in the cycle it arises, always being proportional to Nb × μ 
with Nb = 7 × 107 (ref. 20).

The variance (2c) in offspring number through the cycle (including Poisson 
noise of growth and bottleneck) is denoted as ~3.5 (supplementary information 
in ref. 20). Assuming Poisson noise in each generation, the effective variance in 
offspring number per generation would be 2c = 3.5/T (ref. 20).

Furthermore, ~90 neutral clones were isolated from Evo2D at generation 88 
and sequenced in ref. 21. Based on the number of mutations in their genomes, we 
estimated a mutation rate (μ) ≈ 9 × 10–10 per base-pair per division.

Probability of not observing an optimal type with 1-bp mutational target size. 
Assume that there is 1 bp in the yeast genome that can be mutated to the optimal 
type. We want to estimate the probability of sampling such an adaptive event from 
our evolutionary conditions. We consider the conservative scenario where the 
optimal type can be generated only by a specific nucleic acid change. Thus, the 
mutation rate μ = 10 × 10–10/3 = 3 × 10–10 will be used for the following calculation.

Take the optimal type in Evo2D as an example. Based on its performance in 
fermentation and respiration, we can estimate its fitness per growth cycle in Evo2D 
(s = 16 h × fermentation performance + 28 h × respiration performance = 2.56 per 
growth cycle). Because cells will grow up to eight generations per cycle, its fitness 
per generation is s/8. Two replicates were conducted for Evo2D, with 3,840 and 
960 clones being isolated from replicates 1 and 2, respectively. Using the above 
parameters and equations, we can estimate that if such a 1-bp mutational target 
size exists, the probability of sampling this mutant from Evo2D replicates 1 and 2 is 
0.82 and 0.80, respectively.

Similarly, the probability of observing a 1-bp optimal mutational 
event in Evo1D (s = 16 h × fermentation performance + 4 h × respiration 
performance = 1.49 per growth cycle), and in Evo5D (s = 40 h × respiration 
performance + 60 × stationary phase performance = 2.98 per growth cycle), is 
estimated. Note that the fitness of Evo5D optimal type is estimated by assuming a 
fermentation performance of zero. Because most adaptive clones gain benefits from 
performance, the fitness of Evo5D optimal type is very likely to be underestimated, 
providing a conservative calculation in our case. Two replicates were conducted 
for each evolutionary condition, with 800 clones being isolated from each replicate. 
With a 1-bp mutational target size, the probability of sampling this mutant from 
Evo1D replicate 1 or 2 is 0.39; the probability of sampling this mutant from Evo5D 
replicate 1 or 2 is 0.87.

Based on the above calculations, if the ancestral yeast can be mutated to 
maximize fermentation and respiration performance simultaneously by a single-
step mutation, the probability of not observing such a mutant in both replicates of 
Evo1D and Evo2D will be P = (1 – 0.39) × (1 – 0.39) × (1 – 0.82) × (1 – 0.8) = 0.013.

Similarly, if the ancestral yeast can be mutated to maximize respiration 
and stationary phase performance by a single-step mutation, the probability 
of not observing such a mutant in both replicates of Evo5D will be 
P = (1 – 0.87) × (1 – 0.87) = 0.017.

Due to the difficulty in measuring fitness for Evo1/5D, the probability of not 
sampling such optimal types was not calculated. If Evo1/5D had been considered, 
the opportunity to miss such optimal types would have been even less than that 
estimated above.

A conservative estimate of the above probability. In our previous study22, we 
noted an increase in fitness in one batch of measurements; nonetheless, fitness 
measurements across batches were highly correlated (Supplementary Fig. 5). 

NAture ecoLoGY & evoLutioN | VOL 3 | NOVEMBER 2019 | 1539–1551 | www.nature.com/natecolevol 1549

http://www.nature.com/natecolevol


Articles NaTure ecology & evoluTioN

This batch of fitness measurements is used to infer fermentation and respiration 
performance among Evo2D adaptive clones in this study. Thus, the fitness estimate 
of the optimal type in the fermentation and respiration space may be both affected 
and inflated. Fitness measurements of Evo1D, Evo5D and Evo1/5D adaptive clones 
were conducted independently in a different batch. Therefore, these measurements 
have probably not suffered from such inflation.

However, to provide a conservative estimate, we corrected the estimated 
fitness of all optimal types by an inflation factor (s_correct = (s + 0.01)/1.472; 
Supplementary Fig. 5) and generated corrected fitness estimates: s per cycle of 
Evo2D optimal type = 1.75, s per cycle of Evo1D optimal type = 1.02 and s per cycle 
of Evo5D optimal type = 2.04.

With corrected fitness estimates, the probability of sampling a single-
mutation optimal type in Evo2D replicates 1 and 2 is 0.6 and 0.54, respectively; 
the probability of sampling a single-mutation optimal type in either replicate of 
Evo1D is 0.08; the probability of sampling a single-mutation optimal type in either 
replicate of Evo5D is 0.65.

Thus, if the ancestral yeast strain can be mutated to maximize fermentation 
and respiration performance simultaneously by a single-step mutation, the 
probability of not observing such a mutant in both replicates of Evo1D and Evo2D 
will be P = (1 – 0.08) × (1 – 0.08) × (1 – 0.6) × (1 – 0.54) = 0.156.

If the ancestral yeast can be mutated to maximize respiration and stationary 
phase performance by a single-step mutation, the probability of not observing 
such a mutant in both replicates of Evo5D will be P = (1 – 0.65) × (1 – 0.65) = 0.123, 
still strongly suggesting the absence of such a single-step mutation in the ancestral 
yeast genome.

Viability measurements. Two mutants carrying FPK1 mutations (with one 
carrying an additional chromosome IX duplication) and two independent wild-
type strains were cultured in monoculture for 5 d, for viability measurements. The 
number of viable cells forming colonies on plates was divided by the expected 
number measured by Coulter counter to calculate viability—the proportion of 
viable clones. Viability tests were conducted in two independent replicates with 
consistent results (Supplementary Table 4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequencing data are deposited in Short Read Archive under Bioproject ID 
PRJNA515761. The remaining data are available in either the main text or the 
Supplementary tables. Figures 2 and 3 have associated raw data. All strains are 
readily available from the authors upon request.

code availability
All code used in this manuscript is deposited in GitHub. The source code for 
computing these fitness estimates can be found at https://github.com/barcoding-
bfa/fitness-assay-python. The source code for variant calling and annotation can be 
found at https://github.com/liyuping927/DNAscope-variants-calling.
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