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Abstract

HIV has a high mutation rate, which contributes to its ability to evolve quickly. However, we

know little about the fitness costs of individual HIV mutations in vivo, their distribution and

the different factors shaping the viral fitness landscape. We calculated the mean frequency

of transition mutations at 870 sites of the pol gene in 160 patients, allowing us to determine

the cost of these mutations. As expected, we found high costs for non-synonymous and

nonsense mutations as compared to synonymous mutations. In addition, we found that non-

synonymous mutations that lead to drastic amino acid changes are twice as costly as those

that do not and mutations that create new CpG dinucleotides are also twice as costly as

those that do not. We also found that G!A and C!T mutations are more costly than A!G

mutations. We anticipate that our new in vivo frequency-based approach will provide

insights into the fitness landscape and evolvability of not only HIV, but a variety of microbes.

Author summary

HIV’s high mutation rate allows it to evolve quickly. However, most mutations probably

reduce the virus’ ability to replicate —they are costly to the virus. Until now, the actual

cost of mutations is not well understood. We used within-patient mutation frequencies to

estimate the cost of 870 HIV mutations in vivo. As expected, we found high costs for non-

synonymous and nonsense mutations. In addition, we found surprisingly high costs for

mutations that lead to drastic amino acid changes, mutations that create new CpG sites

(possibly because they trigger the host’s immune system), and G!A and C!T mutations.

Our results demonstrate the power of analyzing mutant frequencies from in vivo viral

populations to study costs of mutations. A better understanding of fitness costs will help

to predict the evolution of HIV.
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Introduction

The human immunodeficiency virus (HIV) replicates with an extremely high mutation rate

and exhibits significant genetic diversity within an infected host, often referred to as a

“mutant cloud” or “quasispecies” [1–7]. Although mutations are crucial for all adaptive pro-

cesses, they can have fitness costs. Thus, to understand the evolution of HIV, it is important

to know the fitness costs of mutations in vivo. Fitness costs influence the probability of evolu-

tion from standing genetic variation (often referred to as pre-existing mutations). Fitness

costs also determine the effects of background selection (i.e., the effects of linked deleterious

mutations on neutral or beneficial mutations) and thus affect optimal recombination rates.

All of these processes affect drug resistance and immune escape in HIV [8–12]. Moreover,

in addition to a better understanding of evolutionary processes in HIV and in general, a

detailed knowledge of mutation costs could help us discover new functional elements in the

HIV genome.

In infinitely large populations, deleterious mutations are present at a constant frequency

equal to u/s, where u is the mutation rate from wild-type to the mutant and s is the selection

coefficient that reflects the negative fitness effect, or cost, of the mutation [13, 14]. In natural

populations of finite size, however, the frequency of mutations is not constant; instead it fluc-

tuates around the expected frequency of u/s, because of the stochastic nature of mutation

and drift [13]. Due to these stochastic fluctuations of frequencies, it is impossible to accu-

rately infer the strength of selection acting on individual mutations (i.e., their cost) from a

single observation of a single (finite size) population. This is why most approaches based on

the frequencies of mutations have to aggregate mutations in groups so that a distribution of

frequencies (the “site frequency spectrum”) can be analyzed and compared between groups

of mutations. This approach can therefore never lead to fitness estimates of individual muta-

tions. Alternative approaches to assess fitness effects are mostly based on (1) phylogenetic or

entropy-based approaches which use between-population or between-species differences

(substitutions) as opposed to within-population variation [15–21] or (2) on in vitro systems

to measure fitness effects (e.g., times series or competition experiments in cell culture [22–

26]). These approaches have their limitations. The phylogenetic approaches estimate fitness

costs over very long timescales, and it is unclear how relevant those estimates are for current

viral populations. The entropy-based methods focus on fairly small subsets of common

mutations and exclude the vast majority of mutations because they are rare. Despite the

expense and time required for in vitro studies, it is unclear whether fitness costs are similar

to in vivo fitness costs.

HIV has unique properties that allow us to study fitness effects in vivo: It is fast evolving

[27–31] and leads to persistent infections [32–34]. This means that genetic diversity accu-

mulates quickly and independently in every host, and samples from different patients can

thus be treated as independent replicate populations [35, 36]. By aggregating data on the

exact same mutation from many patients, the mean frequency of the mutation will approach

u/s and can therefore be used to estimate its fitness cost, because the fluctuations in muta-

tion frequencies represent an ergodic process [37]. Based on this logic, we present a novel

approach that uses observed mutation frequencies in many HIV-infected patients to deter-

mine the fitness effects of mutations in vivo. For this analysis, we assume that there are no

epistatic interactions and that selection coefficients and mutation rates do not vary between

patients. A variation of this approach was employed in parallel to us by Zanini et al. to esti-

mate HIV fitness values from nine infected patients [31]. Reassuringly our basic results

overlap with Zanini et al.; here we also report on novel genomic insights obtained by our

method.

In-vivo fitness costs of HIV mutations
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In the current study, we focus on transition mutations (A$G and C$T) in 870 sites of the

pol gene, which encodes HIV’s protease protein and part of the reverse transcriptase (RT) pro-

tein, in 160 patients infected with HIV-1 subtype B. Transitions are much more common in

HIV than transversions [29], and thus sufficient data are available for these mutations; we

focus on the pol gene because it is highly conserved, relative to other parts of the HIV genome,

and its products experience less direct contact with the immune system than the exposed prod-

uct of the much more variable envelope (env) gene [32, 33]. Finally, we excluded mutations at

drug resistance-related sites, because the samples we use came from patients receiving several

different treatments. Accordingly, we expect that the mutations that we did include in our

study are deleterious.

We report that this proof-of-concept of our in vivo frequency-based approach allowed us to

quantify known properties of mutational fitness costs (such as differences between synony-

mous, non-synonymous and nonsense mutations), and it also revealed novel insights into the

evolutionary constraints of the HIV genome (such as the surprising cost of mutations that

form a CpG site and of G!A and C!T mutations). The fitness effects are surprisingly inde-

pendent of the location in the gene (although we do find a small difference between mutations

in RT versus mutations in protease). Because we study a large number of mutations, it was pos-

sible to determine how characteristics of mutations affected their costs in more detail than has

previously been possible. Our results demonstrate the power of analyzing mutant frequencies

from in vivo viral populations to study the fitness effects of mutations.

Results

Data are consistent with model assumptions

An important assumption for the proposed method is that the mutation frequencies are drawn

from independent populations (each patient harbors an independent HIV population) that are

in mutation-selection-drift equilibrium. This assumption could be violated if the subtype B

epidemic in the United States is not in mutation-selection-drift equilibrium and if samples

were taken soon after a person was infected. In that case, several patient samples may share

high frequency variants of a mutation, which violates the assumption of independence. To

minimize the potential confounding effect of shared high frequency variants, we removed all

site/patient combinations where the mutant frequency of the sample from the first time point

for a patient was not 0%. This filtering step removed 6% of the data.

A further assumption of our approach is that within-patient populations are in mutation-

selection-drift balance. We tested whether the data were consistent with this assumption. For

each site, we used the mean frequency of the mutant and the mutation rate estimate from

Abram et al [29, 38] to estimate the selection coefficient. With this point estimate of the selec-

tion coefficient, the nucleotide-specific mutation rate estimate from Abram et al [29, 38] and a

population size of N = 5,000, we ran individual-based simulations to create 160 population fre-

quencies for the given mutation (following [35]). Next, we sampled from these simulated pop-

ulations using the sample sizes of the real data. The resulting simulated sample frequencies

were then compared with the observed sample frequencies using a Mann-Whitney test. At

91% of the sites, the simulated frequencies were not significantly different than the observed

frequencies, using 5% significance level. The remaining 9% may be governed by epistasis or

may be adaptive, or may have different fitness effects in different patients, so that mutation-

selection balance may not describe the dynamics of these mutations well. We repeated this

analysis for a range of population sizes and found very similar results. This result gives us con-

fidence that the mutation-selection-drift equilibrium describes the actual dynamics in the

patients well (see Fig 1A).

In-vivo fitness costs of HIV mutations
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A clear difference between the costs of synonymous, non-synonymous and

nonsense mutations

Now that we are confident that our main model assumptions hold, we compared mutation fre-

quencies for the three main classes of mutations: synonymous, non-synonymous and non-

sense mutations. As an example, we show the observed and simulated frequency spectra at

all three nucleotides of codon 58 of the protease protein, which comprises nucleotides 172

Fig 1. Different frequency patterns of synonymous, non-synonymous and nonsense mutations. As expected, in the HIV pol gene, synonymous

mutations occurred more frequently than non-synonymous mutations, which occurred more frequently than nonsense mutations, which were not

observed at all. A) First row: Single-site frequency spectrum for three sites in the HIV protease protein (sites 172, 173 and 174). Second row: simulated

data based on estimated selection coefficients. B) Mean mutation frequencies for all sites, ordered by mutation frequency.

https://doi.org/10.1371/journal.pgen.1007420.g001
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through 174 (Fig 1A). The transition mutation at the first position (172) creates a premature

stop codon (CAG to TAG). As expected for a lethal mutation, this nonsense mutation was

never observed in the data and thus has a frequency of zero in all patients. A transition muta-

tion at the second codon position (173) leads to an amino acid (AA) change (glutamine (CAG)

to arginine (CGG)), and also creates a CpG dinucleotide. This mutation was found at low fre-

quencies in some patients (between 0 and 4%). The average frequency was 0.001, suggesting a

selection coefficient of 0.011. A synonymous mutation at the third position of the codon (174,

CAG to CAA) was observed at a wide range of frequencies (mean frequency 0.008, estimated

selection coefficient 0.007, see Fig 1A). The simulated data for all three nucleotides are shown

in blue in the second row of the figure.

Within our dataset we observed a hierarchy of mutation frequencies by class: synonymous

mutations were found at higher frequencies than non-synonymous mutations, and non-syn-

onymous mutations were found at higher frequencies than nonsense mutations. To illustrate

this, we ordered all sites according to observed mutation frequencies and plotted the three cat-

egories of mutations in three colors (Fig 1B). The distributions of the mean frequencies for

each of the three main categories of mutations were significantly different (one-sided two-

sample Wilcoxon test, p< 2.2 � 10−16 for nonsense vs non-synonymous mutations and for

non-synonymous vs synonymous mutations; Fig 1B). All nonsense mutations had an average

frequency of zero, and so did some non-synonymous mutations. Most non-synonymous

mutations had a lower frequency than synonymous mutations (80% of non-synonymous

mutations were present at a frequency lower than 0.002, whereas 82% of synonymous muta-

tions were present at a frequency higher than 0.002). This difference in distributions probably

reflects the higher cost of non-synonymous mutations, which are more likely to directly affect

virus replication. This analysis therefore provides a proof of principle that our approach

works: The observed frequencies reflect the relative costs we would expect for these broad cate-

gories of mutations.

GLM shows costs associated with mutations that create new CpG

dinucleotides, G!A and C!T mutations and mutations that lead to

drastic amino acid changes

To determine how various mutation characteristics affect observed frequencies of synony-

mous and non-synonymous mutations, we fit a generalized linear model (GLM). All transi-

tions resulting in nonsense mutations were excluded from this analysis to better interrogate

which factors contributed to fitness among non-lethal mutations. The advantage of using a

GLM is that we can directly analyze raw counts as opposed to frequencies. This approach

automatically gives more weight to patients for whom we have more sequences, and it allows

us to investigate several effects simultaneously (see Methods). The effects we considered

were 1. whether a site is part of protease vs. reverse transcriptase, 2. the SHAPE value (an

experimentally determined measure of RNA secondary structure [39]), 3. the ancestral

nucleotide (A, C, G or T), 4. whether a mutation is synonymous or non-synonymous, 5.

whether a mutation would create a new CpG site and 6. whether a mutation leads to a drastic

amino acid change or not. Amino acid changes were considered drastic when the transition

changes the encoded amino acid from one major amino acid group (positively charged, neg-

atively charged, uncharged, hydrophobic and special cases) to another (see Methods). The

GLM results are shown in Table 1 and Fig 2. We used estimated mutation rates from Abram

et al [29, 38] and the mutation-selection formula (f = u/s) to translate the observed frequen-

cies into selection coefficients (costs).

In-vivo fitness costs of HIV mutations
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As we saw previously, non-synonymous mutations have lower frequencies than synony-

mous mutations (line 9 in Table 1, p< 0.001), which means that they are more costly. We will

now look into synonymous and non-synonymous mutations in more detail.

CpG sites. Among synonymous mutations, a strong effect was associated with whether or

not a mutation created a new CpG dinucleotide site. A!G mutations and T!C mutations

that created new CpG sites were found at significantly lower frequencies than A!G mutations

and T!C mutations that did not (p< 0.001, line 7 in Table 1) (note that G!A and C!T

mutations cannot create new CpG sites). Using model-predicted frequencies and known

mutation rates, we find that CpG-creating synonymous mutations are 2 times more costly

(selection coefficient appr. 0.004 for both A!G mutations and T!C mutations), than the cor-

responding non-CpG-creating synonymous mutations (selection coefficient appr. 0.002 for

both A!G mutations and T!C mutations). This finding is consistent with the hypothesis

that CpG sites are costly for RNA viruses because they trigger the host antiviral cellular

response [40–44].

Non-synonymous mutations that create CpG sites are also found at lower frequencies than

non-synonymous mutations that do not create CpG sites (Fig 2). However, the effect of creat-

ing a CpG site is not as strong in non-synonymous sites as it is in synonymous sites leading to

a positive GLM coefficient (lines 13 and 14 in Table 1, p< 0.001. The difference in frequencies

shows that, among mutations that do not lead to a drastic amino acid change, A!G mutations

that create a CpG site are approximately one-and-a-half times more costly than those that do

not (0.0039 vs 0.0028).

Table 1. Predictors of frequencies for mutations in the pol gene, estimated using a generalized linear model (GLM).

Estimate Std. Error z value Pr (> | z |) Effect

1 (Intercept) -5.199� 0.035 -147.037 0.000 0.0055��

2 In reverse transcriptase 0.096 0.023 4.223 0.000 +10%

3 SHAPE 0.168 0.037 4.556 0.000 +18%

4 T!C 0.013 0.039 0.339 0.734 +1%

5 C!T 0.104 0.054 1.940 0.052 +11%

6 G!A 0.720 0.040 18.134 0.000 +105%

7 CpG-forming -0.664 0.058 -11.520 0.000 −49%

8 T!C:CpG-forming 0.029 0.093 0.315 0.753 +3%

9 Non-syn -0.345 0.037 -9.460 0.000 −29%

10 T!C:Non-syn -0.375 0.062 -6.017 0.000 −31%

11 C!T:Non-syn -1.036 0.083 -12.456 0.000 −65%

12 G!A:Non-syn -1.124 0.058 -19.496 0.000 −65%

13 Non-syn:CpG-forming 0.358 0.090 3.995 0.000 +43%

14 T!C:Non-syn:CpG-forming 0.330 0.153 2.156 0.031 +39%

15 Drastic amino acid change -0.691 0.034 -20.394 0.000 −50%

The intercept (�) is estimated for synonymous, non CpG-forming A!G mutations in protease with SHAPE value 0. The predicted frequency for such mutations is

therefore e−5.2 which equals 0.0055, as indicated in the last column(��). Row 2-15 of the table lists the effects of changing attributes of the mutation, which is why A!G

mutations are not explicitly listed in the table.

To estimate predicted frequencies for a particular class of mutations from the table, the relevant coefficient estimates must be summed, then exponentiated. For example,

the predicted frequency of a synonymous, A!G mutation in protease with SHAPE value 0 that would create a CpG site is e−5.2−0.664 (taken from line 7), alternatively, one

could calculate this predicted frequency as 0.0055 � (1 − 0.49) = 0.0028. For a site that is CpG forming and non-synonymous, we have to add the estimates from lines 9

and 13 to get e−5.2−0.664−0.345+0.358 or 0.0055 � (1 − 0.49) � (1 − 0.29) � (1 + 0.43) = 0.0029. For the continuous SHAPE parameter, the value of the SHAPE parameter for a

given site should be multiplied by 0.168 (line 2) and then exponentiated, e.g., for a SHAPE value of 0.5, the predicted frequency is e−5.2−0.5�0.664 = 0.0060.

https://doi.org/10.1371/journal.pgen.1007420.t001
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Ancestral nucleotide. We also found an effect of the nucleotide in the consensus sequence

(i.e., the presumed ancestral nucleotide): synonymous G!A mutations were observed at

higher frequencies than the other mutations (line 6, Table 1), but given their high mutation

rate, their frequencies were actually lower than expected. We could not test whether this effect

was significant using the GLM framework, but a one-sided two-sample Wilcoxon test showed

that the difference in estimated selection coefficients for G!A mutations and non-CpG-form-

ing A!G mutations was highly significant (p = 5 � 10−9). Indeed, the estimated selection coef-

ficients based on model predictions suggested that synonymous G!A mutations are two-and-

a-half times as costly as non-CpG-forming A!G mutations (0.0048 vs 0.002). For synony-

mous C!T mutations, their frequency is not significantly different from the frequency of

synonymous, non-CpG-forming A!G mutations (see line 5 in Table 1), but because their

mutation rate is about double the mutation rate of A!G mutations, their estimated cost is two

times as high as for non-CpG-forming A!G mutations (0.0039 vs 0.002, p = 4 � 10−5), see Fig

2 and S5 Fig. We find qualitatively similar results when we use mutation rate estimates derived

from intra-patient data [31], though the effect size is smaller in that case (synonymous G!A

mutations are 1.3 times more costly and C!T mutations are 1.8 times more costly than A!G

mutations).

Fig 2. Predicted and observed mutation frequencies for different mutation classes. Mutation frequencies as predicted by the generalized linear model (large dots)

and observed frequencies (small dots). The horizontal lines show the standard errors from the GLM. The graph shows the model predictions for synonymous and non-

synonymous mutations that do not involve a drastic amino acid change and either form CpG sites (blue) or do not (green). In addition, for non-synonymous

mutations, predictions are shown for mutations that involve a drastic amino acid change and either form CpG sites (light red) or do not (yellow).

https://doi.org/10.1371/journal.pgen.1007420.g002
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Among non-synonymous mutations, we also found a strong effect of the ancestral nucleo-

tide: C!T and G!A mutations are both more costly than A!G and T!C mutations (Fig 2).

Again, we could not use the GLM framework to test whether this difference was significant,

but one-sided two-sample Wilcoxon tests showed that the difference in estimated selection

coefficients was highly significant (p = 4 � 10−6 for C!T and p = 3 � 10−5 for G!A mutations

when compared with A!G mutations). We estimated that, among non-synonymous muta-

tions that do not involve a drastic amino acid change nor create a CpG site, C!T mutations

are five-and-a-half times more costly than A!G mutations (0.0157 vs 0.0028), and G!A

mutations are seven times more costly than A!G mutations (0.021 vs 0.0028), see Fig 2 and

S5 Fig. When we use the mutation rates as estimated by [31], we find that non-synonymous

G!A mutations are 4 times more costly and C!T mutations are 5.1 times more costly than

A!G mutations.

Drastic amino acid changes. Mutations that led to a drastic amino acid change were

found at lower frequency than mutations that did not (p< 0.001). For example, A!G muta-

tions that result in a drastic amino acid change are roughly twice as costly as A!G mutations

that do not (0.0057 vs 0.0028). We observed similar fold changes for the other possible transi-

tions (Fig 2).

Other effects. Mutations in the RT portion of the gene had slightly higher frequencies

than those in the protease portion (p< 0.001, line 2 in Table 1), suggesting that they are some-

what less costly. Similarly, our model predicts a small but significant effect of the SHAPE value

(p< 0.001, line 3 in Table 1), an experimentally determined measure of RNA secondary struc-

ture [39]. Specifically, sites with a higher SHAPE value (i.e., those less likely to be part of an

RNA structure) were associated with higher mutation frequencies (suggesting lower muta-

tional costs), presumably because the secondary structure of the RNA molecule plays a func-

tional role in HIV replication [39] (see Table 1).

Effects not captured by the GLM

Outliers. We asked whether we could use our results to find individual sites at which

mutations are more costly than expected based on our current knowledge of the HIV genome.

However, if we do a simple outlier analysis and focus on, say, the 5% most costly sites overall

in our dataset, we will find that these are all the nonsense mutations, plus some mutations that

lead to drastic amino acid changes and create CpG sites. Such analysis by itself is not very

interesting, since our GLM analysis already revealed these results. Instead, we first grouped the

sites in nine groups according to the GLM results (see Methods) and then to look at the outli-

ers (5% highest selection coefficient values) within each of these groups. We made a table of all

outliers (see Supporting Information). We found that a few amino acids show up in the outlier

list more than once, but this is not surprising, given that our dataset only comprises a few hun-

dred amino acids. The vast majority of these sites do not have a known function; a select few

are near the active site of the protein. In future work, it will be worth following up on those

positions in pol.
Amino acid identity. The nature of the amino acid change (drastic or not) and the ances-

tral nucleotide in the consensus sequence both had an effect on costs. In addition, we found

that many of the most costly non-synonymous mutations were associated with a small number

of amino acid changes starting from proline (P) and glycine (G). This is consistent with our

knowledge of protein structure: proline and glycine are often unique and irreplaceable, as the

only cyclic and smallest amino acid, respectively. The triplets that encode these two amino

acids are C and G rich (CCN for proline and GGN for glycine) which may partially explain

why G!A and C!T mutations are costly. Fig 3 shows the cost of non-synonymous changes

In-vivo fitness costs of HIV mutations
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ordered by ancestral and mutant amino acid. Contrary to our results, Zanini et al. [31] found

other amino acids (tryptophan (W), tyrosine (Y), cysteine (C), and also proline (P)) to contrib-

ute most to the cost, but this difference is possibly due to the fact that they considered non-syn-

onymous and nonsense mutations, which increases the cost of amino acids encoded by codons

with nonsense mutations. For example, tryptophan (encoded by only one codon, TGG) is a

highly conserved amino acid. Two of the three possible transitions lead to a stop codon, which

makes the average mutation very costly compared to other amino acids —when nonsense

mutations are included in the analysis [31]. Since our analysis only focuses on non-synony-

mous mutations and excludes nonsense mutations, we find different results. This might

explain the discrepancy between our analyses.

No effect of location in the pol gene. We were interested to see whether fitness costs were

distributed evenly along the pol gene or whether some parts of the gene harbored clusters of

sites with particularly high cost mutations as was found by other studies [17]. We plotted the

fitness cost point estimates along the length of the pol gene (i.e., the sites for which we have

data) (see Fig 4). We colored sites according to whether the transition mutation we considered

was synonymous or non-synonymous, and the latter group was split into G!A and C!T

mutations in light red and A!G and T!C mutations in purple. Visually, it is clear that there

is no strong effect of location on fitness cost. There are no clear stretches of particularly high

or low costs. We tested whether there was a statistically significant effect of location using a

randomization test and we did this separately for synonymous and non-synonymous muta-

tions using a sliding window approach (see Methods). We found no effect of location, although

sites within the same codon did have correlated fitness costs.

Fig 3. Distribution of estimated selection coefficients by amino acid replacements. Many of the most costly mutations are concentrated at a few amino acids (e.g., P

(proline) and G (glycine)). The selection coefficients shown are calculated directly from mean mutation frequencies and mutation rates using the mutation-selection

balance formula, f = u/s.

https://doi.org/10.1371/journal.pgen.1007420.g003
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Parameters for gamma distribution of fitness effects

In addition to the characteristics that determine the fitness costs of individual mutations, we

investigated the distribution of fitness effects (DFE). This distribution is of interest to the evo-

lutionary biology community because it affects standing genetic variation, background selec-

tion, and optimal recombination rates [16]. Moreover, the DFE affects the evolvability of a

population: A DFE weighted toward neutral and adaptive mutations may reflect a population

with more capacity to evolve. Many viruses, however, have been found to have a DFE com-

posed mainly of deleterious and lethal mutations. To determine the DFE of the pol gene in

HIV, we used the fitness cost point estimates for synonymous and non-synonymous mutations

(including nonsense mutations) for each of the ancestral nucleotides (Fig 5). Overall, there

were few very deleterious and lethal mutations, except for non-synonymous C!T and G!A

mutations and nonsense mutations. This is, at least partly due to the fact that we only consider

transition mutations. We also estimated parameters for the gamma distribution that best

describes the entire DFE (Table 2). These parameters can be used in studies of background

selection and in other studies that involve simulations of evolving populations. We performed

this analysis also for two other datasets with pol sequences for multiple patients (the Zanini

dataset [45] and the Lehman [46], see Methods and suppl. materials).

Relationship between mutation frequencies within patients and within the

global subtype B epidemic

Next, we wanted to determine how well the observed within-patient mutation frequencies cor-

respond with worldwide HIV mutation frequencies. All sequences in the Bacheler et al dataset

belonged to HIV-1 subtype B, which is the most studied HIV-1 clade. We assembled a com-

parison set of HIV-1 subtype B sequences from treatment-naive patients using the Stanford

HIV Drug Resistance database (HIVdb); this set contained 23,742 protease sequences and

22,785 reverse transcriptase sequences [47]. S6 Fig shows the correlation between average

within-patient mutation frequencies from the 160 patients analyzed in this study and global

Fig 4. Estimated selection coefficients for transition mutations along the pol gene. Point estimates for the selection

coefficients for each transition mutation along the pol gene. Synonymous mutations are shown in yellow, non-

synonymous mutations are shown in light red (C!T or G!A mutations) and purple (T!C or A!G mutations),

nonsense mutations are shown in black. This plot illustrates that estimated selection coefficients do not appear to be

affected by location in the gene. Note that these histograms include mutations that create CpG sites and those that

don’t, which means that the effect that G!A and C!T mutations are more costly than non-CpG forming A!G

mutations is not visible in this figure.

https://doi.org/10.1371/journal.pgen.1007420.g004
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mutation frequencies calculated from the HIVdb dataset. A high correlation coefficient was

detected when comparing all 870 sites (Spearman’s rank correlation coefficient ρ = 0.68),

showing concordance between mutation frequencies within patients and in the global subtype

B epidemic. Similarly, Zanini et al [31] found that fitness costs were anti-correlated with sub-

type diversity (Spearman’s rank correlation coefficient ρ = −0.59).

Discussion

Our fitness cost inference approach is based on the simple but highly powerful notion that

mutation frequencies are in mutation-selection balance. We began by validating the approach.

First, as expected, we found a clear separation of observed frequencies for synonymous, non-

synonymous and nonsense mutations (Fig 1). Second, we found that inferred costs of drastic

Fig 5. Distribution of fitness costs as estimated from mutation frequencies using the mutation-selection balance formula (f = u/s). Most synonymous mutations

(left panel) have very low selection coefficients. For non-synonymous mutations and nonsense mutations, (right panel), selection coefficients are higher, especially for

C!T and G!A mutations. Dashed vertical lines indicate median selection coefficients. Note that the scales of the y-axes differ between the individual plots.

https://doi.org/10.1371/journal.pgen.1007420.g005

Table 2. Parameters for the gamma distribution of fitness effects for transition mutations in pol in 160 HIV-infected patients from the Bacheler et al. dataset,

reflecting scale (κ) and shape (θ).

Num. sites Fraction lethal Mut Rates from Abram 2010 Mut rates from Zanini 2017

κ θ κ θ
870 0.082

(0.066, 0.099)

0.334

(0.257, 0.411)

0.275

(0.265, 0.289)

0.327

(0.267, 0.388)

0.333

(0.321, 0.348)

The ‘fraction lethal’ is the fraction of the mutations that had a mean frequency smaller than or equal to the mutation rate, so that they are estimated to be lethal. Sites are

resampled with replacement and gamma distributions are fit 1000 times to create 95% confidence intervals via bootstrapping (shown in parentheses).

https://doi.org/10.1371/journal.pgen.1007420.t002
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amino-acid alterations were higher than those of non-drastic changes (Fig 2). This matches

biological knowledge, and has been observed when analyzing long-term evolution [48, 49]. To

the best of our knowledge this is the first report that physicochemical differences in amino-

acids directly affect short term evolution as occurring during within-host evolution (but see

[50]). These validations allowed us to focus on novel insights obtained by the method. First,

we found that mutations that created new CpG dinucleotides were twice as costly as mutations

that did not. Although it has been known for a while that CpG sites are depleted in genomes of

HIV [42, 51, 52] and other RNA viruses [40–43], this is the first report suggesting strong selec-

tion operating against the de novo creation of CpG sites via mutation, to the extent that even

one more CpG causes a fitness cost. Indeed, just recently it has been reported that HIV viruses

with multiple CpGs in their genome are actively detected by an innate immune enzyme called

ZAP, leading to inhibition of viral replication [44]. Our results hence suggest that this line

of defence is particularly potent in driving the evolution of HIV, at the resolution of single

nucleotide changes. Our next surprising finding was the substantial difference in fitness cost

depending on which of the four nucleotides was altered. In particular, G!A and C!T muta-

tions were two to seven times more costly than A!G mutations (discussed below). Thus,

although we analyzed only a small part of the HIV genome using a dataset with limited

sequencing depth, we succeeded in recovering and quantifying many known properties of

mutational fitness costs, as well as discovering novel findings. Our data also allowed us to esti-

mate parameters of DFEs, which will be useful for future studies on the evolutionary dynamics

of HIV populations (Fig 5, Table 2). Finally, we found that within-patient frequencies and

global frequencies in the subtype B clade were very similar (Spearman’s rank correlation coeffi-

cient ρ = 0.68), suggesting that fitness costs are largely similar both within patients and across

the pandemic.

Comparison with other studies in viruses

In general, our results are consistent with those from a recent study on HIV-1 evolution by

Zanini et al [31], based on a dataset described previously by the same authors [45]. Notably,

both studies found a clear separation between synonymous and non-synonymous mutation

frequencies, and these frequencies correlated well with global HIV diversity. Our study went

on to find several novel insights. It should be noted that the proportion of lethal mutations esti-

mated in our study (5.9%) is low compared to proportions from [31] and from in vitro studies

on viral coding sequences (reviewed in [53]). For example, Sanjuan et al [22] found that 40%

of random mutations in the RNA vesicular stomatitis virus were lethal. Similarly, a study by

Rihn et al [54] of the HIV capsid found that 70% of non-synonymous mutations were lethal,

which corresponds to around 47% of all mutations [54].

Several factors could explain why we found a lower proportion of lethal mutations as com-

pared to other studies. First, even observed variants may represent inviable viruses, and for

many sites in our dataset, the bootstrapped confidence intervals include lethality.

Specifically, the Taq polymerase used in PCR for our analyzed samples has a slight bias that

could create spurious A! G and T! C mutations, leading us to conclude that there are few

lethals in these categories. We will return to these Taq biases in more detail in the next section.

[55, 56].

Second, we only considered transition mutations, whereas transversions may be more fre-

quently lethal, as they are more often non-synonymous, more likely to lead to drastic amino

acid changes, and more likely to create premature stop codons, due to the nature of the genetic

code. Third, sequencing or amplification (PCR) errors may obscure our results. Many low-fre-

quency variants in our dataset were only observed once, and it is possible that some of these
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were not true variants; we may thus have underestimated the percentage of lethal mutations.

Fourth, we looked only at one gene, and this gene may have a different fitness landscape than

other parts of the viral genome. Finally, different environments (in vitro vs in vivo) or different

genetic backgrounds (usually one genetic background in the in vitro studies vs many in in vivo
studies) may explain the observed differences. Future studies with more sequences and more

sites will have better power to determine the true proportion of lethal mutations in HIV in
vivo.

High costs of G!A and C!T mutations

Among synonymous and non-synonymous mutations, we found G!A mutations to be two-

and-a-half to seven times more costly than A!G mutations. C!T mutations were found to

be two to five and a half times more costly than A!G mutations. We suggest four hypotheses

to explain these initially surprising results: 1. They could be an artifact caused by spurious

mutation rate estimates, 2. They could be an artifact caused by PCR error, 3. They could be

due to mutation bias present in HIV genomes, 4. They could represent a form of APOBEC3

hypermutation. We’ll discuss these in the following paragraphs.

1. Mutation rates estimates. We note that synonymous G!A mutations are present in our

data at higher frequencies than A!G mutations (see Fig 2). Naively, this would suggest

that they are less costly. However, the G!A mutation rate is estimated to be so high that

the observed frequencies are actually lower than expected, which, in our model translates to

high costs. Synonymous C!T are equally frequent as A!G mutations, but, because they

have a higher mutation rate, we conclude that they must be associated with higher costs.

Hence, the mutation rate estimates are key to these results. We have two sources for muta-

tion rate estimates from two very different studies, Abram et al [29, 38] (in vitro estimates
from cell culture) and Zanini et al [31] (in vivo estimates based on accumulation of synony-

mous mutations). Notably, in both of these studies, G!A mutations occur at a higher rate

than other transition mutations, although in the Zanini study this difference is less pro-

nounced (S7 Fig). Using mutation rates from one or the other study does not change our

findings qualitatively though the effect size for the G!A mutations is much smaller if we

use the Zanini mutation rates. If G!A and C!T mutation rate estimates are overestimated

in both studies, we cannot rule out that fitness costs of these mutations are lower than what

we estimate.

2. Second, for the non-synonymous mutations, where the observed frequencies are very low,

the results could be an artifact caused by PCR error. Taq polymerase mistakes are biased

such that A!G and T!C mutations are more common than G!A and C!T mutations

[31, 56]. This could explain why we observe higher frequencies of A!G and T!C muta-

tions, relative to G!A and C!T mutations. When we redo our analysis with sequencing

data from the Zanini paper, that does not used the biased Taq polymerase, and also use

their mutation rates estimates, we still find that non-synonymous G!A and C!T muta-

tions are more costly than A!G and T!C mutations (80% and 570% respectively).

3. Third, the effect of costly G!A and C!T mutations might be related to a strong mutation

bias in the HIV genome. G!A mutations are roughly five times more common than A!G

mutations according to [29] and two and a half times more common according to [31] (S7

Fig and S4 Table). C!T mutations are twice as common as A!G mutations in according

to both studies (see S4 Table). Specifically, the G!A bias may have led, over long evolution-

ary timescales, to the well known A bias in the HIV genome [57, 58]. Due to the strong

mutation bias, sites at which having an A or G does not affect viral fitness would become A-
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biased over time. Thus, A sites would be enriched for (nearly) neutral sites, and G sites

would be depleted of neutral sites, which could lead to G!A mutations being more costly,

on average, than A!G mutations. A similar effect may be at play for C!T mutations,

since here is also a T bias in the HIV genome, though it is not as strong as the A bias.

4. APOBEC3 hypermutation. The effect of costly G!A mutations may be related to the activ-

ity of APOBEC3 enzymes, which hypermutate the HIV genome, leading to an increased

proportion of G!A mutations [59–62]. We checked whether our sequences are dramati-

cally affected by APOBEC3 hypermutation. Visual inspection of neighbor-joining trees for

each patient showed that there were no pol sequences that were hypermutated. This is prob-

ably because hypermutated viruses are mostly non-viable, and unlikely to show up when

genetic material from viral particles is sequenced, which is what the current study is based

on. However, APOBEC3 may also have a milder effect of slightly increasing the number

of G!A mutations in the genome. The G!A mutations we observe could be linked to

other G!A mutations in the genome, outside the sequenced region of pol. Together, these

G!A mutations could be more deleterious than a single A!G mutation (which we use for

comparison). This could explain why the observed G!A mutations in our study are more

costly.

Study limitations

One limitation of our study is that we focused on a small region of the HIV genome, namely

870 sites of the pol gene [63]. Because the patients in the Bacheler et al study were treated with

a variety of antiviral treatments, we had to exclude drug resistance positions, as they would

have been under positive selection in some of the patients. To study the costs of resistance

mutations, it would be necessary to analyze samples from untreated patients [31]. Further-

more, it is unknown how long the patients in our dataset were infected before samples were

collected. If samples were taken soon after infection, genetic diversity in the viral population

may have been low, and frequencies of some mutations may have been lower than the expected

f = u/s, resulting in overestimates of the selection coefficients. A second limitation is that we

assumed one mutation rate for all A!G mutations, and one rate for all C!T mutations, etc.

However, evidence exists that mutation rates vary along the genome, which would mean that

selection coefficient estimates for individual mutations may be unreliable [64, 65].

Finally, our in vivo frequency-based approach did not allow us to study epistatic interac-

tions between mutations. Recent work on HIV, however, shows that epistatic interactions may

be important. For example, such interactions play a role in determining the mutational path-

way that the virus uses to escape cellular immunity [66] and to develop drug resistance [25, 67,

68]. It is currently unclear how the costs of mutations as determined in this study depend on

their genetic background and further studies need to be designed that combine the strengths

of our approach to study costs of virtually all mutations in vivo, with the strengths of other

approaches to study epistatic effects between common mutations.

Outlook

The current study should be seen as a proof of concept of our in vivo frequency-based

approach. Our results demonstrate the power of analyzing mutant frequencies from in vivo
viral populations to study the fitness effects of mutations. We hope that soon this method will

be applied to the entire HIV genome and the genomes of other fast-evolving microbes. For

HIV specifically, we expect that patient samples with high viral loads will be sequenced much

more deeply than in any of the studies analyzed in this article. Transversion mutations can
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then be analyzed in addition to transition mutations. Such a dataset will allow us to get a more

fine-grained and precise picture of the costs of mutations at individual sites across the entire

HIV genome, including for mutations in other genes and non-coding regions of the virus and

for drug resistance mutations in pol and elsewhere. Because our method makes it possible to

estimate in vivo costs, the results will contribute to our understanding of drug resistance evolu-

tion and immune escape and may also contribute to vaccine design.

Methods

Ethics statement

All data underlying this work have been previously published by third parties and no further

ethics approval was needed.

Description of the data/filtering

We used sequences from a dataset collected by Bacheler et al. [63], a study that focused on

patients in three clinical trials of different treatments, all based on efavirenz (a non-nucleoside

RT inhibitor) in combination with NRTIs (nucleoside RT inhibitors) and/or protease inhibi-

tors. The treatments in this study were not very effective, in part because some patients were

initially prescribed monotherapy, which almost always lead to drug resistance, and in part

because patients had previously been treated with some of the drugs, so their viruses were

already resistant to some components of the treatment. Viral loads in these patients were typi-

cally not suppressed, which made it possible to sequence samples even during therapy. We

have previously used part of this dataset to study soft and hard selective sweeps [35].

The Bacheler et al. [63] samples were cloned and Sanger-sequenced. For each patient, all

available sequences were treated as one sample, even when they came from different time

points. Patients with less than five sequences were excluded from the analysis, leaving us with

a median of 19 sequences per patient for 160 patients (3,572 sequences in total). Sequences

were 984 nucleotides long and were composed of the 297 nucleotides that encode the HIV pro-

tease protein and the 687 that encode the beginning of RT. We excluded 75 drug resistance–

related sites (codons 46, 82, 84 in Protease and codons 41, 62, 65, 67, 70, 75, 77, 100, 101, 103,

106, 108, 116, 151, 181, 184, 188, 190, 210, 215, 219, 225 in RT) [69] and 39 protease sites that

overlap with gag, leaving 287 synonymous, 555 non-synonymous and 28 nonsense mutations,

for a total of 870 sites.

Calculation of mutation frequencies

To identify mutations, we compared the sequences to the HIV-1 subtype B consensus sequence

(consensus sequences from 2004 retrieved from Los Alamos Website (https://www.hiv.lanl.

gov/content/sequence/NEWALIGN/align.html). We will refer to this reference sequence as

the wildtype (WT) or ancestral sequence.

To make sure that mutations in founding viruses with which patients got infected not skew

our results, we added a filtering step. For each patient, sites are only included if all sequences

from the first sampling time point for that patient carry the same nucleotide as the WT

sequence. This filtering step removed 6% of the data. We only considered transition mutations

(A$G and C$T), excluding transversion mutations. For example, for a site with an A in the

reference sequence, the frequency of a transition mutation was calculated for each patient as

the number of sequences with a G divided by the number of sequences with a G or an A.

Sequences with a C or a T were thus not considered at all if the reference sequence had an A in

that position. In addition, if, in a given sequence, there was more than one mutation in a
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triplet, this triplet was removed for that specific sequence, so that all mutations could be clearly

classified synonymous, non-synonymous or nonsense. Occasionally this meant that a sample

from a patient had to be excluded for a given site, so for some mutations we had fewer than

160 frequencies to analyze.

Selection coefficients were estimated for each mutation by dividing the nucleotide-specific

mutation rate by the observed average frequency (based on the mutation-selection balance for-

mula f = u/s). We used mutation rates as estimated by Abram et al. [29, 38].

Sliding window approach to determine location effect

This analysis aims to determine whether sites that are in close proximity to each other have

more similar fitness costs than expected. If the window size is 10, then we first consider the

first 10 non-synonymous sites in the pol gene and we calculate the mean fitness effect of the

mutations in that window (window mean). We then slide with step size 1 to sites 2 to 11 and

again calculate the window mean fitness effect etc. In this manner we slide from the beginning

to the end of the sequence and once we have all window means, we calculate the variance of

the window means. If high cost sites are clustered spatially, than the mean fitness is high in

some windows but low in others and the variance of the window means will be relatively high.

We compared the variance of window means with the null expectation of no spatial clustering.

To obtain a null expectation, we randomized the location of all positions, while keeping the

sequence the same (e.g., each non-synonymous G-A mutation would be swapped with another

non-synonymous G-A mutation). For the resulting randomized datasets we also calculated the

variance of the window means. We then compared the range of variances obtained from 1000

randomizations with the variance from the real data. For synonymous sites, the observed vari-

ance of window means was never significantly higher than the variance of window means of

randomized datasets, for a wide range of window sizes (2-100), which shows that there is no

evidence for any location effect for synonymous sites, in other words, there are no stretches of

low or high fitness cost mutations.

For non-synonymous sites, we found that the variance of window means for the real data

was often higher than the variance of window means for the randomized data, which suggests

that, for non-synonymous sites, there are stretches of the pol gene with higher fitness costs and

stretches with lower fitness costs. We hypothesized that this was due to the fact that two neigh-

boring nucleotides within a codon, will affect the same amino acid, and if that amino acid is

important for the fitness of the virus, then mutations at both of the nucleotides will be particu-

larly costly. To test this, we did a randomization test where we kept codons intact, but random-

ized their location. For example, a codon that encodes for asparagine could be swapped with

another codon that encodes for asparagine. We found that after this codon by codon randomi-

zation, we find the same variance of window means as we find in the original dataset. This

shows that the location effect we see is mostly due to neighboring sites within codons.

Generalized linear model analysis

Using a generalized linear model (GLM), we predicted mutant frequencies for certain catego-

ries of mutations (e.g., synonymous, non-CpG-forming, A!G mutations) and then used the

mutation-selection formula (f = u/s) to predict the costs of these groups of mutations (see S5

Fig). Specifically, we fit a GLM where the response variable is whether a given nucleotide is

WT or mutant, and this response variable is assumed to follow a binomial distribution, using

the glm package in the R language [70]. The model we fit includes the nucleotide in the consen-

sus sequence, its experimentally determined SHAPE value [39], whether or not the position

was in the RT protein and the types of changes resulting from a transition at that position.
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These changes included whether a transition was non-synonymous, lead to a drastic amino

acid change or formed a new CpG site. We used the following groups of amino acids and

assumed that a change from one group to another was ‘drastic’: positive-charged (arginine

(R), histidine (H), lysine (K)), negative-charged (aspartic acid (D) and glutamic acid (E)),

uncharged (serine (S), threonine (T), asparagine (N) and glutamine (Q)), hydrophobic groups

(alanine (A), isoleucine (I), leucine (L), phenylalanine (F), methionine (M), tryptophan (W),

tyrosine (Y) and valine (V)), the special amino acids (cysteine (C), glycine (G) and proline

(P)). We also fit interactions between the ancestral nucleotides, whether a transition was non-

synonymous, and whether the transition formed a CpG site.

Note that for the GLM, actual counts were considered as opposed to frequencies. That is, if

we have 20 sequences for patient 1, and at a given nucleotide, we observe 2 As and 18 Gs, we

used those counts. This approach automatically gives more weight to patients for whom we

have more sequences. Each position in each sequence from each patient was treated as an inde-

pendent observation.

The GLM coefficients reported in Table 1 can be used to predict the probability that a

mutation is observed at a given site. For example, the intercept = (−5.2) means that a synony-

mous, non-CpG-forming mutation in protease at a site with A as WT has an probability of exp
(−5.2) = 0.055 to be mutated, so its predicted frequency is 0.055. For a similar site that has T as

WT, we need to add 0.013 to the exponent and find a probability of exp(−5.2 + 0.013) = 0.056.

To explicitly test whether two categories of mutations with different mutation rates had dif-

ferent selection coefficients, we used a one-sided two-sample Wilcoxon test (also known as a

Mann-Whitney test). This was necessary because a GLM can only test whether a mutant of a

certain category is more likely to be present than a mutant of another category (i.e., has a

higher frequency). We were interested, however, in whether a mutant of a certain category is

more costly than a mutant of another category. For example, synonymous C!T mutations

occur at a similar frequency as synonymous, non-CpG forming A!G mutations (see Table 1,

line 5), but because their mutation rates are quite different, we estimate that their costs are dif-

ferent. (see S5 Fig).

Outlier analysis

We grouped the sites first in nine groups according to the GLM results and then listed outliers

(5% highest selection coefficient values) in each group.

The groups used were:

• synonymous, non-G, non-CpG

• synonymous, non-G, CpG

• synonymous, G

• non-syn, A or T, no-CpG, no-drastic AA change

• non-syn, A or T, CpG, no-drastic AA change

• non-syn, A or T, no-CpG, drastic AA change

• non-syn, A or T, CpG, drastic AA change

• non-syn, C or G, no-CpG, no-drastic AA change

• non-syn, C or G, no-CpG, drastic AA change

In-vivo fitness costs of HIV mutations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007420 June 28, 2018 17 / 24

https://doi.org/10.1371/journal.pgen.1007420


Estimating a gamma distribution to fit the distribution of fitness effects

We fit a gamma distribution to the DFE (based directly on averaged frequencies at 870 sites and

the mutation-selection balance formula f = u/s). Transitions that were never observed (frequency

of 0) were not considered when fitting the gamma distribution. The most likely shape and scale

parameters for the data were found using the subplex algorithm implemented in the R package

nloptr [71] (see Table 2). Bootstrapped confidence intervals were created by resampling the data

with replacement and re-estimating the gamma distribution parameters. Selection coefficients

were estimated using the mutations rates given in Abram et al. [29, 38] and Zanini et al. [31].

Comparison with the global epidemic

A large HIV-1 sequence dataset was retrieved from the HIVdb (http://hivdb.stanford.edu/

pages/geno-rx-datasets.html) [47]. This dataset contains a single sequence per patient. Protease

and RT sequences were downloaded in separate files. Sequences that met the following criteria

were included in the analysis: treatment-naive host status and classification as HIV-1 subtype

B. In total, 23,742 protease and 22,785 RT sequences were collected. Average mutation fre-

quencies for each site were calculated as explained above (e.g., including only transitions,

excluding triplets with more than one mutation). Spearman’s rank correlation coefficient (ρ)

was used to quantify the correlation between within-patient and global mutation frequencies.

Additional datasets

In order to test how transferable our method is, we repeated parts of our analysis with the

Zanini et al. dataset [45] and the Lehman et al. dataset [46].

The Zanini [45] samples came from nine patients. There were multiple samples per patient

(72 samples in total), typically collected at least a few months apart. Thus we followed Zanini

et al in treating those samples as if they were completely independent. The sequencing method

used was Illumina. We downloaded mutation frequencies for each sample (http://hiv.

tuebingen.mpg.de/data/) and averaged frequencies across all 72 samples. The Zanini data cover

the whole HIV genome, but we only considered the regions that overlap with the Bacheler data

[63]. In addition, the Zanini data [45] contain sequences for different HIV subtypes (B, C and

CRF01-AE); we only considered sites that were conserved between subtypes B, C and

CRF01-AE and excluded resistance related sites so that 758 sites were analyzed. Mean mutation

frequencies for all sites, ordered by mutation frequency are shown in S1 Fig. The distribution of

fitness effects is shown in S3 Fig and the estimated gamma distribution parameters in S3 Table.

The Lehman samples were 454-sequenced. The samples were collected at seroconversion

and one month later, but we only included the time point one month after seroconversion in

our analysis, as we expected that the samples from the earliest time point would contain almost

no genetic diversity. The sequences span approximately 540 sites in the RT protein. The Leh-

man data [46] contained HIV subtypes B, C and A; we only considered sites that were con-

served between subtypes B, C and A and excluded resistance related sites, so that 415 sites

were analyzed. Mean mutation frequencies for all sites, ordered by mutation frequency are

shown in S2 Fig. The distribution of fitness effects is shown in S4 Fig and the estimated

gamma distribution parameters in S3 Table.

Accession numbers

The sequences of the Bacheler dataset [63] were retrieved from Genbank under accession num-

bers AY000001 to AY003708. The Lehman dataset [46] was downloaded from the NCBI website

using accession number SRP049715 (www.ncbi.nlm.nih.gov/sra/?term=SRP049715).
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Supporting information

S1 Fig. Mutation frequency for the Zanini dataset [45]. Mutation frequency for 758 pol sites

from the Zanini dataset [45], ordered by mutation frequency.

(PNG)

S2 Fig. Mutation frequency for the Lehman dataset [46]. Mutation frequency for 415 reverse

transcriptase sites from the Lehman dataset [46], ordered by mutation frequency.

(PNG)

S3 Fig. Distribution of fitness costs for the Zanini dataset [45]. Distribution of fitness costs

for non-synonymous and synonymous mutations for the Zanini dataset [45]. Nonsense muta-

tions are included in the non-synonymous mutations. Note that the scale of the y-axis differs

between the graphs.

(PDF)

S4 Fig. Distribution of fitness costs for the Lehman dataset [46]. Distribution of fitness

costs for non-synonymous and synonymous reverse transcriptase mutations from the Lehman

dataset [46]. Nonsense mutations are included in the non-synonymous mutation category.

Note that the scale of the y-axis differs between the graphs.

(PDF)

S5 Fig. Estimated selection coefficients for different mutation classes. Selection coefficients

for transitions at every nucleotide site in the pol sequence show that CpG-forming mutations

are more costly than non-CpG-forming mutations and that mutations that involve a drastic

amino acid change are more costly than mutations that do not. Selection coefficients were esti-

mated using a generalized linear model and sequence data from 160 HIV-infected patients.

Shown are predicted selection coefficients for synonymous (left) and non-synonymous (right)

mutations that do not involve a drastic amino acid change and either create CpG sites (blue) or

do not (green). For non-synonymous mutations, predictions are also shown for mutations that

do involve drastic amino acid changes and either create CpG sites (light red) or do not (yellow).

(PNG)

S6 Fig. Correlation of within-patient mutation frequencies and global between-patient

subtype B mutation frequencies. A correlation (Spearman’s rank correlation coefficient ρ =

0.68) exists between average pol mutation frequencies at the within-patient level (in the 160

patients analyzed in this study) and mutant frequencies in the global subtype B epidemic

(23,742 protease and 22,785 reverse transcriptase consensus sequences from the HIVdb [47]).

Values shown on a log scale. Non-synonymous mutations are shown in dark pink, synony-

mous mutations in yellow.

(PNG)

S7 Fig. Mutation rate estimates per replication from Abram et al. [64] as calculated by

Rosenbloom et al. [38] and mutation rate per day from Zanini et al. [31].

(PDF)

S1 Table. List of outlier sites with highest selection coefficients in protease. All sites were

grouped in 9 groups, then the 5% highest selection coefficients were recorded in each group.

(PDF)

S2 Table. List of outlier sites with highest selection coefficients in reverse transcriptase.

All sites were grouped in 9 groups, then the 5% highest selection coefficients were recorded in

each group.

(PDF)
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S3 Table. Parameters for the gamma distribution of fitness costs for the Bacheler, Zanini

and Lehman datasets [45, 46, 63]. Parameters for the gamma distribution of fitness costs

for pol mutations based on mutation frequencies the Bacheler, Zanini and Lehman datasets,

reflecting scale (κ) and shape (θ). The “fraction lethal” is the fraction of the mutations that had

a mean frequency smaller than or equal to the mutation rate, so that they are estimated to be

lethal. Sites are resampled with replacement and gamma distributions are fit 1000 times to cre-

ate 95% confidence intervals via bootstrapping (shown in parentheses).

(PDF)

S4 Table. Mutation rate estimates per replication from Abram et al. [64] as calculated by

Rosenbloom et al. [38] and mutation rate per day from Zanini et al. [31].

(PDF)

S1 File. Mutation frequencies and estimated selection coefficients from the Bacheler [63]

dataset.

(CSV)

S2 File. Mutation frequencies and estimated selection coefficients from the Zanini [45]

dataset.

(CSV)

S3 File. Mutation frequencies and estimated selection coefficients from the Lehman [46]

dataset.

(CSV)
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