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SUMMARY

Few studies have ‘‘quantitatively’’ probed how
adaptive mutations result in increased fitness.
Even in simple microbial evolution experiments,
with full knowledge of the underlying mutations
and specific growth conditions, it is challenging
to determine where within a growth-saturation cy-
cle those fitness gains occur. A common implicit
assumption is that most benefits derive from
an increased exponential growth rate. Here, we
instead show that, in batch serial transfer experi-
ments, adaptive mutants’ fitness gains can be
dominated by benefits that are accrued in one
growth cycle, but not realized until the next growth
cycle. For thousands of evolved clones (most with
only a single mutation), we systematically varied
the lengths of fermentation, respiration, and sta-
tionary phases to assess how their fitness, as
measured by barcode sequencing, depends on
these phases of the growth-saturation-dilution cy-
cles. These data revealed that, whereas all adap-
tive lineages gained similar and modest benefits
from fermentation, most of the benefits for the
highest fitness mutants came instead from the
time spent in respiration. From monoculture and
high-resolution pairwise fitness competition exper-
iments for a dozen of these clones, we determined
that the benefits ‘‘accrued’’ during respiration are
only largely ‘‘realized’’ later as a shorter duration
of lag phase in the following growth cycle. These
results reveal hidden complexities of the adaptive
process even under ostensibly simple evolutionary
conditions, in which fitness gains can accrue
during time spent in a growth phase with little
cell division, and reveal that the memory of those
gains can be realized in the subsequent growth
cycle.
C

INTRODUCTION

Experimental microbial evolution combined with genomics has

succeeded in delineating the molecular basis and population

dynamics of adaptation for multiple species and under diverse

conditions [1–14]. However, this stands in sharp contrast to the

difficulty of ‘‘quantitatively’’ understanding how these genetic

events lead to fitness benefits [15, 16]. Whereas the beneficial ef-

fects of somemutations are obvious, e.g., amplification of a gene

encoding a transporter of the limiting nutrient, there are many

cases where it is far from clear. Furthermore, beneficial muta-

tions may have multiple phenotypic effects at the organismic

level. Whether the net effect of these will be beneficial, and if

so by how much, likely depends on the subtleties of the specific

environmental conditions. Whereas some detailed analyses of

observed fitness gains in experimentally evolved microbes

have been carried out [17, 18], these approaches were low

throughput and required detailed knowledge of the fitness-

related phenotypic changes.

For serial batch culture experiments with distinct physiological

growth phases, one possible approach is to study where within

the growth cycle adaptive clones acquire their fitness benefits.

A challenge of this approach is that the growth cycle phase

where fitness gains might accrue may be distinct from the phase

where reproduction occurs, even in a ‘‘simple’’ system, such as

asexually growing single cells. An example frommetazoans pro-

vides a useful analogy: in some animal species, such as Richard-

son’s ground squirrels (Spermophilus richardsonii), females that

gain more body mass outside of the reproductive season have a

higher fecundity the following spring when they do reproduce

[19]. Thus, understanding fitness by focusing on the parts of

the growth cycle that are associated with a faster rate of cell di-

vision might miss the importance of the part of the growth cycle

where the physiological gains actually accrue.

We previously isolated yeast clones containing single adaptive

mutations from a glucose-limited serial transfer evolution [6, 12];

in the evolutionary condition, the clones experienced lag,

fermentation, and respiration phases. Here, we have quantita-

tively investigatedwhere in the growth cycle these clones accrue

and realize their fitness benefits. We first studied realized fitness

by generating detailed cell number measurements throughout
urrent Biology 28, 1–11, February 19, 2018 ª 2018 Elsevier Ltd. 1

mailto:dpetrov@stanford.edu
mailto:gsherloc@stanford.edu
mailto:dsfisher@stanford.edu
https://doi.org/10.1016/j.cub.2018.01.009


A

B C

Figure 1. Yeast Growth Curve under and beyond the EC and Fitness
Components of Adaptive Clones in Monoculture

(A) Example of number of viable yeast cells during the growth cycle. Lag phase

was extrapolated from cell number measurements at early time points (STAR

Methods). These data are from adaptive clone PDE2 in replicate 1.

(B) Lag, fermentation, and respiration components of fitness of mutant clones

estimated from differences in the monoculture cell number relative to WT. Red

lines indicate clones’ per-cycle fitness. Negative numbers imply a fitness

decrease in that phase.

(C) Per-cycle fitness estimated from monoculture cell number measurements

versus high-throughput barcode fitness measurements. The adaptive clones’

fitnesses were estimated by combining the lag, fermentation, and respiration

components estimated from the monoculture cell number measurements. The

black line represents y = x.

See also Figure S1, Table S1, and Data S1 and S2.
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the growth cycle under the evolutionary condition (EC) using

both monocultures and high-resolution pairwise competitions

for a dozen representative clones. Cell number measurements

capture where within the growth cycle fitness benefits are real-

ized, but not necessarily where those benefits are accrued.

Next, using barcode-based fitness measurements, we quanti-

fied where in the growth cycle fitness was accrued by measuring

how per-cycle fitness of�1,600 adaptive clones [12] scaled with

the systematically varied lengths of fermentation, respiration, and

stationary phases. We found that the most fit adaptive clones

primarily accrue their fitness during respiration but largely realize

that fitness only later, by having a shorter lag phase in the next

growth cycle; such clones often also experienced a significant

fitness loss during stationary phase, suggesting an intrinsic
2 Current Biology 28, 1–11, February 19, 2018
trade-off. In summary, combining cell-number-based ap-

proaches with high-throughput quantitative fitness measure-

ments enabled us to infer the adaptive strategies for all 1,600

adaptive clones.

RESULTS

We previously isolated 4,800 clones from generation 88 of the

Levy et al. [6] evolution experiments, measured each clone’s

fitness, and sequenced the whole genomes of several hundred

adaptive clones to characterize the spectrum of beneficial

mutations [12]. We divided the 4,800 lineages into four classes:

(1) putatively neutral haploids, whose fitness was indistinguish-

able from that of the ancestor; (2) adaptive haploids; (3) ‘‘pure

diploids’’ that had self-diploidized but had no additional benefi-

cial mutations; and (4) ‘‘high-fitness diploids’’ with additional

beneficial mutations. Here, we sought to understand the adap-

tive strategies selected for in the original EC by studying ‘‘real-

ized’’ and ‘‘accrued’’ fitness benefits from different phases of

the growth cycle under the EC and how adaptive clones trade-

off in stationary phase, which was not part of the EC.

Monoculture and Pairwise Competition Measurements
Monoculture Measurements

We characterized monoculture growth of twelve clones with

known adaptive mutations plus a wild-type control (STAR

Methods; Table S1) using the same culture conditions as the

EC, inwhichcells spend48hrpergrowthcyclewithapproximately

4hr in lagphase, 16hr in fermentation, and28hr in respiration (Fig-

ure 1A). Cell number, bio-volume, glucose concentration, ethanol

concentration, and cellular trehalose were measured during the

48-hr growth cycle (Figure S1; Data S1). We used thesemeasure-

ments to calculate each adaptive clone’s fitness change during

lag (lag component), fermentation (fermentation component),

and respiration (respiration component) in the EC.

All adaptive clones gained fitness during fermentation and

most (except pure diploids) also gained fitness in lag phase rela-

tive to the ancestral control (Figure 1B). The fitness gains of all

clones during fermentation are consistent with their faster con-

sumption of glucose and faster production of ethanol during

fermentation (Figures S1D and S1E). By contrast, only the

pde2 and RAS2 mutants clearly exhibit a positive respira-

tion component, and several adaptive mutants even have nega-

tive respiration components (Figure 1B). The total fitness gains

across the entire EC growth cycle, as estimated by the monocul-

ture growth curves, are consistent with our prior estimates using

barcode sequencing (Figure 1C; Pearson’s r = 0.79; 95% confi-

dence interval [CI] [0.19, 0.94]) [12]. The mean fitness difference

between these estimates is 0.16 per growth cycle, which corre-

sponds to less than one-fifth of a cell division per growth cycle

(e0.16�1 z0.17 divisions).

However, there are issues with estimating EC fitness from

monoculture measurements (STAR Methods). Most importantly,

the EC fitness was measured—indeed defined—in a pool in

which the ancestor was the dominant type and set the dynamics

of glucose, ethanol, and other chemical concentrations in the cell

culture. The absence of the ancestor in monoculture will likely

affect the nutrient composition in the culture and thus the growth

and measured fitness of the mutants.
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Figure 2. Frequency Dynamics of Mutant Clones in Competitive
Assays with WT under the EC and the Resulting Mutants’ Fitness

Components

(A) Mutant lineages’ cumulative relative fitness in pairwise competition with a

YFP-marked ancestor. The first growth cycle ends at 48 hr. Color bars at the

top of the figure indicate growth phases, consistent with the color scheme in

Figure 1A.

(B) Lag, fermentation, and respiration components estimated from the pair-

wise competition assays.

(C) Per-cycle fitness estimated from pairwise competition assays versus high-

throughput barcode fitness measurements. The black line represents y = x.

See also Table S1 and Data S1 and S2.
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Pairwise Competition

To measure fitness in the EC relative to the ancestor, we

conducted high-resolution pairwise competitions for the same

12 adaptive clones (plus a wild-type [WT] control), each grown

in competition with a yellow fluorescent protein (YFP)-tagged

ancestral strain (STAR Methods). From the relative frequency

of the adaptive clones in each pairwise competition, we esti-

mated the cumulative fitness relative to the ancestor compared

over two consecutive growth cycles (STAR Methods; Data S1).

The fitness trajectories have high curvature, are somewhat

non-monotonic, and sometimes have significant fitness gains

in short periods of time, most notably at the start of the cycle

close to lag phase (Figure 2A). This complex behavior is in

contrast to the common assumption implicit in the analysis of

most serial transfer evolution experiments: fitness is usually re-

ported per generation, as if the fitness benefits all derive from

a steady growth advantage during exponential phase. To param-

eterize the components of fitness from lag, fermentation, and

respiration phases, respectively, we used cumulative fitness dif-

ferences from 0 to 4 hr, from 4 to 20 hr and from 20 to 48 hr. All of
the adaptive lineages showed a clear fitness increase during

all three phases (Figure 2B); interestingly, for some clones, this

is in contrast to the monoculture data estimates (compare Fig-

ure 1B to Figure 2B). The total per-cycle fitness estimated from

0 to 48 hr is strongly correlated to EC fitness (Figure 2C;

r = 0.88; 95% CI [0.57, 0.97]) [12], with an average difference

of only 0.1 per cycle. This fitness difference is comparable to

the smallest barcode-measured fitness differences between

mutants in the same gene and the variations in the barcode-

measured diploid fitnesses.

High-Throughput Barcode Fitness Measurements
Whereas the monoculture and pairwise competition assays

provided insight into the growth-phase-dependent fitness ef-

fects of our adaptive mutations, both assays are limited in

throughput. Furthermore, they only measured cell number

change in a given growth phase (realized fitness gains) and

thus do not reflect where within the growth cycle those bene-

fits might be accrued.

To identify where the fitness gains accrue, we used a high-

throughput fitness measurement approach to determine how

the full-cycle fitness of the �4,800 evolved clones [12] changed

under a series of conditions inwhichwe systematically varied the

lengths of fermentation and respiration and also varied the dura-

tion of stationary phase to explore fitness trade-offs (Figures 3A

and 3B; Table S2). A subset of these clones was removed from

further analysis due to either poor quality fitness measurements

or to an ambiguous ploidy designation [12] (STARMethods). This

resulted in 3,048 high-quality lineages: (1) 1,464 neutral haploids;

(2) 1,400 pure diploids; (3) 144 adaptive haploids; and (4) 40 high-

fitness diploids.

Experiments to determine the fermentation fitness compo-

nent were conducted in two separate batches, with experi-

ments using 4, 6, or 8 generations of growth in batch A and

8 or 9 generations in batch B (Table S2). Pure diploids, adap-

tive haploids, and high-fitness diploids increased their per-

cycle fitness as they spent more generations in fermentative

growth (Figure 3C). Whereas there are clear batch effects,

analysis of the data from batch A alone yields the same

quantitative trends as when combining data from both batches

(Figures S3B and S3C); batch B alone has too small a dilution

range to be useful.

The pure diploids’ fitness did not change significantly across

conditions with increased time in either respiration or stationary

phases (Figure 3D). By contrast, the fitness changes of adaptive

haploids and high-fitness diploids were both non-linear and non-

monotonic with cycle length (Figure 3D). The majority of these

lineages increased their fitness as they spent more time in the

respiratory growth phase (20–60 hr) but then decreased their

fitness as they spent more time in stationary phase (Figure 3D),

suggesting the presence of trade-offs between different parts

of the growth cycle.

Using the fitness measurements across both sets of experi-

ments (varying dilution and varying cycle length), we calculated

the fermentation-dependent, respiration-dependent, and sta-

tionary-dependent components of fitness (STAR Methods).

Note, these phase-‘‘dependent’’ components are conceptually

distinct from the fitness components calculated from the

monoculture and pairwise competition assays above—they
Current Biology 28, 1–11, February 19, 2018 3



Figure 3. High-Throughput Barcode Fitness

Measurements of 4,800 Evolved Clones under

Varying Growth Conditions

(A) Schematic of conditions with varying dilution

rate to control the number of generations in the

fermentation phase. Arrows indicate the end of the

growth cycle; cycle length was adjusted to maintain

a constant respiration phase length.

(B) Schematic of conditionswith varying cycle length

to change the amount of time spent in the respiration

(24-hr and 48-hr cycles) and in stationary phases

(72-hr, 96-hr, 120-hr, and 168-hr cycles), with the

respiration phase ending around 60 hr. Dashed

vertical lines indicate lag, fermentation, respiration,

and stationary phase; colors in color bar at the top

of the figure are consistent with the color scheme

in Figure 1A.

(C) Fitness measurements under conditions with

varying number of generations in the fermentation

phase.

(D) Fitness measurements under conditions with

varying time in the respiration phase and the sta-

tionary phase. Respiration ended around 60 hr.

Note, fitness scales in (C) differ from (D) as the

fitness changes are larger in (D). Violin plots are

shown for neutral haploids and pure diploids.

Fitness trajectories across this series of condi-

tions are shown for adaptive haploids and high-

fitness diploids (which carry a beneficial mutation).

The vertical black dashed line separates the exper-

iments in different batches (Table S2).

See also Table S2 and Data S3.
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are inferred by perturbing the environment and measuring how

overall per-cycle fitness changes rather than by measuring

cell number change within specific portions of the EC growth

cycle.

Contributions to EC Fitness from Fermentation and

Respiration

We studied how both accrued fermentation-dependent and

respiration-dependent components vary between classes of

adaptive lineages and how these correlated with the fitness of

individual clones under the EC [12]. Almost all adaptive lineages

accrued fitness during fermentation (Figure 4A; see STAR

Methods for analysis), with high-fitness diploids having a signifi-

cantly higher averaged fermentation-dependent component

than pure diploids (one-sided Wilcoxon Rank-Sum Test [WRS]

p = 8e�6) and adaptive haploids (one-sided WRS p = 7e�7;

Figure 4A). This suggests that self-diploidization and additional

adaptivemutations affect fermentative growth by non-redundant

mechanisms. The fermentation-dependent component was

weakly correlated with the EC fitness (r = 0.14; 95% CI [0.07,

0.21] for all adaptive lineages) and thus variation in per-cycle
4 Current Biology 28, 1–11, February 19, 2018
EC fitness among adaptive lineages cannot

be explained by differences during fermen-

tative growth (Figure 4A). By contrast,

we found a strong positive correlation be-

tween the respiration-dependent compo-

nent and EC fitness for all adaptive lineages

(r = 0.62; 95% CI [0.57, 0.66]; Figure 4B),

with adaptive haploids (r = 0.70; 95% CI
[0.62, 0.78]) and high-fitness diploids (r = 0.65; 95% CI [0.37,

0.80]) being more highly correlated. The pure diploid class

has a negligible respiration-dependent component (mean of

�0.004, compared to the batch effect of 0.1 per cycle; Figure 4B).

These data suggest that the EC fitness variation between adap-

tive lineages (other than pure diploids) comes primarily from dif-

ferences in benefits accrued during respiration and, potentially,

changes in the diauxic shift from fermentation to respiration.

In general, adaptive haploids, especially thosewith the highest

fitness, have larger respiration-dependent components than

fermentation-dependent components (Figure 4D; one-sided

paired WRS p = 5e�12), whereas high-fitness diploids gain

slightly more from fermentation (Figure 4D; one-sided paired

WRS p = 0.01) and pure diploids gain fitness from the fermenta-

tion phase exclusively (Figures 4A, 4B, and 4D; z test p < 2e�16).

The sums of these components are strongly correlated with the

EC fitnessmeasurements across all classes of adaptive lineages

(Figure 4C; r = 0.63; 95% CI [0.59, 0.66] with r = 0.73; 95% CI

[0.66, 0.79] for adaptive haploids and high-fitness diploids).

The average fitness difference between the sums of components



Figure 4. Quantification of Fermentation-

Dependent andRespiration-Dependent Com-

ponents of Fitness in the EC, Inferred from the

Variable Dilution and Cycle Length Measure-

ments of Figure 3

(A and B) Fermentation-dependent component (A)

and respiration-dependent component (B) versus

the per-cycle fitness in the EC.

(C) Estimated fitness from combining the fermenta-

tion-dependent and the respiration-dependent

components against their measured EC fitness. The

black line represents y = x.

For (A)–(C), each dot represents one evolved lineage

and is colored by ploidy and adaptive class under

the EC; Pearson correlation is calculated for all

adaptive lineages.

(D) The difference between the respiration-depen-

dent component and the fermentation-dependent

component among four groups of evolved clones.

See also Data S3.
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and the EC fitness is only 0.19 per growth cycle among adaptive

clones, suggesting that these two components are sufficient to

recapitulate EC fitness.

Within-Cycle Fitness Trade-Offs

We next examined how fitness changed as a result of cells

entering stationary phase, which was not experienced in the

EC. We observed a general negative correlation between

the EC fitness and the fitness change per hour during

stationary phase (the stationary-dependent rate; Figure 5A;

r = �0.65; 95% CI [�0.69, �0.59] for all adaptive lineages,

r = �0.69; 95% CI [�0.75, �0.63] for adaptive haploids, and

r = �0.77; 95% CI [�0.89, �0.53] for high-fitness diploids).

Indeed, some of the most fit adaptive haploids showed a

dramatic decrease in fitness. Based on the lack of variation

in fermentation-dependent component, we expected and

observed only a weak correlation between the fermentation-

dependent component and the stationary-dependent rate (Fig-

ure S3A; r = 0.06; 95% CI [0.01, 0.1] for all adaptive lineages).

However, there is a strong anti-correlation between the respi-

ration-dependent component and the stationary-dependent

rate (Figure 5B; r = �0.63; 95% CI [�0.66, �0.59] for all adap-

tive lineages), suggesting the existence of a physiological

trade-off between the adaptive benefits accrued in respiration

and survival during stationary phase.
Cu
We hypothesized that the loss of fitness

during stationary phase of many adaptive

clones was due to decreased cell viability.

We found that the 12 tested adaptive

clones exhibited significantly decreased

viability over a six-day monoculture growth

compared to the ancestral WT clone (Fig-

ure S2A; Data S2) and that there was a

strong correlation between the stationary-

dependent rate and the viability loss rate

(Figure S2B; r = 0.92; 95% CI [0.56, 0.98];

R2 = 0.9). In addition, the adaptive clones

exhibiting this trade-off had reducedcellular

accumulation of trehalose (Data S2), a stor-
age carbohydrate synthesized during respiration and important

for cell survival during stationary phase [20–22].

Combining Monoculture, Pairwise Competition Assays,
and Barcode Fitness Measurements
Whereas the pairwise competition assays (Figure 2C) and the

barcode-based fitness measurements (Figure 4C) are both

able to recapitulate the total EC fitness, they measure different

things: the first measures realized fitness benefits, whereas the

second measures accrued benefits that may or may not be

realized in the same growth phase in which they accrue. To

determine whether there are fitness benefits accrued in one

part of the growth cycle yet realized later, we compared realized

and accrued fitness components measured with these two

approaches.

The accrued fermentation-dependent component estimated

from our barcode fitness measurements is positively correlated

with the realized fermentation component estimated from our

pairwise competition assays (Figure 6A; r = 0.80; 95% CI [0.23,

0.94]; note, IRA1-NONSENSE is excluded from correlation ana-

lyses in each panel of Figure 6, as it is a significant outlier) with an

average difference of only 0.08 (comparable to our observed

batch effects). This suggests that fitness benefits accrued during

fermentation are realized in the fermentation phase.
rrent Biology 28, 1–11, February 19, 2018 5



Figure 5. Quantification of Stationary-

Dependent Rate

(A) Fitness change per hour during stationary

phase (stationary-dependent rate, inferred from

variable cycle length barcode measurements)

versus measured EC fitness.

(B) Stationary-dependent rate versus respiration-

dependent component.

Pearson correlation is calculated for all adaptive

lineages in (A) and (B).

See also Figures S2 and S3 and Data S3.
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However, the magnitude of the accrued respiration-depen-

dent component estimated from the barcode fitness measure-

ments is in general larger than that of the realized respiration

component measured directly from the pairwise competition

assays (Figure 6B). Strikingly, for the high fitness lineages, the

accrued respiration-dependent component is larger than could

possibly be realized during respiration, given that the cells divide

very little during respiration (see STAR Methods for quantitative

explanation). We therefore suggest that the accrued respiration

benefits are not fully realized within the respiration phase itself

and thus must be realized in other phases of the growth cycle,

either lag phase or fermentation. Because the fermentation

components were fully accounted for, we hypothesized that

the fitness accrued in respiration is instead largely realized in

the subsequent lag phase. We thus combined the realized lag

and respiration components from the pairwise competitions

and compared this sum to the accrued respiration-dependent

component from the barcode fitness measurements. Confirming

our hypothesis, the sum of the realized lag and respiration com-

ponents is not only significantly correlated with (r = 0.62; 95% CI

[0.29, 0.87]) but is also comparable in magnitude to the accrued

respiration-dependent component, with an average difference

of 0.23 (Figure 6C). Similarly, the sum of the realized lag and

respiration components estimated from the monoculture mea-

surements is more comparable to the accrued respiration-

dependent component estimated from the barcode fitness

measurements than is the realized respiration component

alone (Figure S4). These combined data support the notion

that benefits accrued during respiration are partially realized in

the subsequent lag phase.

Fitness Profiles Denote Genotypes and Identify Modes
of Adaptation
The combined set of barcode fitness measurements across all

nine conditions (Figures 3A and 3B) can be considered as a

fitness ‘‘profile’’ for each of our assayed lineages. Visual inspec-

tion of the fitness of lineages carrying mutations in the Ras/pro-

tein kinase A (PKA) pathway showed that lineages with a similar
6 Current Biology 28, 1–11, February 19, 2018
genetic basis have similar fitness profiles

(Figure 7A). We investigated whether

these fitness profiles provide predictive

power of their genetic basis of adaptation

(within the spectrum of observed adaptive

mutants) and/or reveal distinct modes of

adaptation. Using principal-component

analysis (PCA) on the entire set of fitness
data for 3,048 clones, we identified two large clusters, corre-

sponding to neutral haploids and pure diploids, and determined

that adaptive haploids and high-fitness diploids were separated

from these two groups (Figure S5); 87% of the variance is ac-

counted for by the first two PCs. We then conducted PCA (Fig-

ure 7B) using the fitness data from only the adaptive haploids

(144 lineages) and the high-fitness diploids (40 lineages), of

which 78 adaptive haploids and 22 high-fitness diploids had pre-

viously been genotyped [12] (small icons in Figure 7B); we also

genotyped an additional 24 adaptive haploid clones (large icons

in Figure 7B; also see Data S3 and S4). The first PC accounts for

60% of the variance and captures the non-monotonic nature of

the fitness trajectories under the varying growth cycle time con-

ditions, whereas the second PC accounts for 35% of the vari-

ance and corresponds to the combination of the fitness changes

under both series of conditions (Figure S6A). The 102 sequenced

adaptive haploids cluster by the identity of the adaptive mutation

(Figure 7B). Furthermore, all lineages with mutations in the same

Ras/PKA pathway gene were on average significantly closer

(Euclidean distance) in this PC space than the average for all

pairs of lineages (t test p < 0.001; IRA1, IRA2, GPB1, GPB2,

and PDE2). This suggests that fitness profiles might be useful

not only for predicting mutant genotypes but also for guiding

the selection of a diverse subset of representative strains for

further detailed analysis in future studies. Indeed, the newly

sequenced clones whose fitness profiles grouped them

with previously sequenced Ras/PKA pathway mutants (large

icons in Figure 7B) invariably had mutations in the same genes

as those previously sequenced clones. By contrast, those newly

sequenced clones whose fitness profiles did not group with

known signaling pathway mutants did not have mutations in

either the Ras/PKA or TOR/Sch9 pathways.

The fitness profiles also provide a way to capture the variety

of possible ‘‘modes of adaptation’’ that are selected for during

evolution. Based on the PCA analysis of the fitness profiles,

we grouped the adaptive clones into six clusters (Figure S6B),

suggesting distinct modes of adaptation (which we define as

including the trade-offs that result from the adaptation). Clusters
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Figure 6. Comparison of Fitness Components Estimated from

Different Approaches

Comparison of the realized fitness components estimated from the pairwise

competition assays with the corresponding accrued fitness components

estimated from the high-throughput barcode fitness measurements: (A) real-

ized fermentation component from the pairwise competition with the accrued

fermentation-dependent component from the barcode fitness measurements;

(B) realized respiration component from the pairwise competition with the

accrued respiration-dependent component from the barcode fitness mea-

surements; and (C) combined realized fitness from the lag and the respiration

phases estimated from the pairwise competition with the accrued respiration-

dependent component estimated from the barcode fitness measurements.

See also Figure S4.
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1–4 were enriched in nutrient response pathway mutations (Fig-

ures 7B and S6B; Data S3 and S4) with each of the clusters

showing a different rate of fitness trade-off during stationary

phase (Figure S6C). By contrast, clusters 5 and 6 captured other

modes of adaptation (Figures S6B–S6D), including those outside

of the nutrient response pathways (Data S3 and S4).

DISCUSSION

Underlying Causes of Fitness Gain
Three groups of beneficial mutants were characterized under the

EC: (1) pure diploids caused by self-diploidization; (2) high-

fitness diploids carrying additional mutations; and (3) adaptive

haploids, with the majority of them containing mutations in

Ras/PKA or TOR/Sch9 pathways, which couple nutrient sensing

to the decision to undergo cell division.

We observed that all adaptive mutants accrue a similar

amount of fitness benefit during fermentation, regardless of their

molecular basis of adaptation. By contrast, adaptive mutants

with different underlying genetic bases accrue a highly variable

amount of benefit during respiration, with the most adaptive

haploids gaining a larger benefit from respiration than from the

�8 generations of fermentation. The ability of S. cerevisiae to
efficiently ferment sugars has likely been selected for both during

its domestication for beverage production, as well as under lab-

oratory conditions when growing on rich media [23]. It is possible

that the fermentation ability of the S. cerevisiae strain used in our

experiments is close to the maximum possible and that there is

little room to improve it. By contrast, the respiration ability has

likely been under less of a selective pressure during this history.

This may explain why fermentation benefits across all three

groups of adaptive mutants are both minor and similar in magni-

tude, whereas the magnitude of respiration benefits is variable

over a broad range. The variable capacity of accruing benefits

during respiration of different mutants in the Ras/PKA or TOR/

Sch9 pathways may come from the different extent of activation

of these pathways, together with different magnitudes of delete-

rious pleiotropic effects of the mutations.

Based on our comparison of realized fitness components to

accrued fitness components, we propose that benefits accrued

during respiration can be partially carried over and realized in the

subsequent lag phase. Cell size measurements show that

the tested adaptive haploids are on average 26% larger than

the ancestor by the end of the growth cycle. Adaptive haploids

with a larger size may benefit from the nutrient-limited batch

culture condition by dividing sooner upon the addition of fresh

medium, thus shortening lag phase, though the increased size

by itself is insufficient to account for the large respiration-depen-

dent fitness increases. The difference between the respiration-

dependent component of the fitness and that realized during

respiration can be as large as 0.6, which, under the simple hy-

pothesis that the shortening of lag phase is due to cells being

closer to the size needed to divide, would require them to have

been almost twice as large as theWT. Furthermore, pure diploids

also have a larger cell size yet do not accrue benefits during

respiration. Combined, these data suggest that increased size

by itself is insufficient for respiration-dependent fitness in-

creases and thus that other factors may also be important for

shortening the subsequent lag phase of the adaptive haploids.

For example, physiological differences in regulation of cell divi-

sion that occur during diauxic shift and respiration might cause

a subsequent short lag phase duration. Identification of the key

physiological changes that cause this ‘‘memory’’ effect is a chal-

lenge for future research.

Ras/PKA Hyperactive Mutations
Fitness benefits accrued during respiration are strongly corre-

lated with the amount of fitness lost during stationary phase,

implying a trade-off between respiration benefits and survival

in stationary phase for the large-effect mutations. The majority

of these large-effect mutants are predicted to have upregulated

the Ras/PKA pathway. Mutants with an activated PKA have

reduced accumulation of intracellular trehalose [24, 25] and

glycogen [26], repress autophagy [27], are extremely sensitive

to both carbon and nitrogen starvation [26], and do not arrest

as unbudded cells when deprived of nutrients, preventing them

from entering stationary phase properly [28]. We observed that

adaptive clones with substantial accrued respiration benefits

indeed had reduced intracellular trehalose storage, implying

that these adaptive clones may sacrifice trehalose synthesis

to boost growth during respiration, which would cause loss of

survival in stationary phase. However, as the precise physiology
Current Biology 28, 1–11, February 19, 2018 7



A

B

Figure 7. Fitness Profiles of Recurrent Mu-

tants and PCA Using Adaptive Haploids and

High-Fitness Diploids

(A) Fitness profiles, from varying cycle length ex-

periments, for selected adaptive haploids grouped

by the mutant gene (and mutant type for IRA1).

The vertical dashed line separates batch C and

batch D experiments (Table S2).

(B) PCA of only adaptive haploids and high-fitness

diploids using their fitness measurements across all

(both variable dilution and variable cycle length)

experiments described in Figures 3A and 3B. Each

symbol represents one lineage. 15 lineages carrying

mutations outside of the nutrient response path-

ways are labeled as ‘‘other’’ (see Data S3 and S4 for

details). Large symbols correspond to clones whole

genome sequenced in this study; small symbols are

clones sequenced in [12]. The neutral haploids and

pure diploids symbols show the averages over the

PCs of the neutral haploid population and the pure

diploid population (as determined in Figure S5).

See also Figures S5 and S6 and Data S3 and S4.
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underlying accrued respiration benefits is not clear and the

causes of stationary survival are complex, further investigation

is needed to understand this trade-off fully. It is known that

decreased Ras/PKA activity results in a decreased growth rate

during both fermentation and respiration [29] and that exoge-

nous addition of cyclic AMP (cAMP) affects both fermentative

and respiratory activities [30]. This may explain the selection of

likely hyperactive Ras/PKA pathway mutants in serial-dilution

experiments with fermentation and prolonged respiration [29]

(and in this work), as well as in chemostat experiments, where

the cells ferment the limiting glucose as fast as possible [4, 5, 31].

In contrast to well-controlled simple laboratory conditions,

yeast cells in nature are exposed to complex and changing con-

ditions so that adaptive mutations observed under laboratory

conditions may differ vastly from those selected in natural envi-

ronments. In particular, starvation is frequently encountered by

yeast cells in nature, and hyperactive nutrient pathwaymutations

will likely be strongly deleterious in such conditions, as observed

for many of our mutants. Consistent with this scenario, hyperac-

tive nutrient pathway mutants have been identified at high-

temperature quantitative trait loci (QTLs) in a domesticated
8 Current Biology 28, 1–11, February 19, 2018
palmwine strain but were not seen in a nat-

ural oak bark isolate [32].

Fitness Profiles
Phenotypic profiling [33–36] and fitness

profiling [37, 38] of systematic mutant col-

lections—typically deletion or transposon

insertion mutants—under a variety of con-

ditions have greatly contributed to our

knowledge of the functional roles of genes.

However, we are the first to conduct a

high-throughput survey of fitness effects

across many conditions using thousands

of ‘‘adaptive’’ clones.

The way in which the conditions were

rationally chosen allowed us to use the
combined fitness data (fitness profiles) to capture the general

adaptive strategies among different classes of adaptive clones

and to identify different modes of adaptation under the EC,which

would be impossible by measuring fitness of only a handful

of adaptive clones using traditional methods. Our work shows

that having quantitative measurements of fitness across multiple

environments not only captures broad similarities (e.g., the clus-

tering of nutrient response pathway mutants) but also resolves

the differences between mutations in different genes in the

same pathway (and sometimes even between types of mutation

in the same gene) with even simple analysis, such as PCA. More

importantly, fitness profiles improve our understanding of adap-

tation from a functional perspective, above what is gained solely

from the genotypic point of view. Thus, we propose that using a

combination of experimental evolution and fitness profiling to

study the genetics and functions of a large number of adaptive

mutants will result in a greater understanding of the adaptive pro-

cess. By measuring evolved lineages’ fitness in a wide range of

conditions and analyzing the resulting fitness profiles, we can

gain a broad picture of the adaptive strategies during adaptation.

Importantly, given finite sequencing and phenotyping resources,
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this approach also enables informed choices as to which adap-

tive clones to sequence to identify potentially novel mutations,

including those in only modestly adaptive clones.

Lessons for Experimental Evolution
Fitness gains in experimental evolution are often reported per

generation [6, 39]. This implicitly suggests that the fitness gains

will scale linearly with time spent in exponential growth phase.

However, in our EC, the fitness gains for adaptive haploids are

not primarily from fermentation (where most cell division occurs)

but instead are realized mainly in lag phase due to benefits

accrued during respiration. The ‘‘per-cycle’’ fitness is thus a

more appropriate measure of the fitness gain, as it avoids any

implicit assumption about where within the growth cycle those

gains might occur. This approach has been used for evolution

in complex conditions [40], and our data suggest that per-cycle

fitness may be more appropriate even for seemingly simple con-

ditions, such as serial batch culture.

The net fitness effect for any beneficial mutation will be the

sum of its positive and negative effects, which will depend on

the particular environment. This balance suggests that the net

fitness of adaptive lineages can be highly sensitive to modest

changes in conditions. Thus, qualitative characterizations of

the environment—such as ‘‘batch culture in rich medium’’ or

‘‘in low glucose’’—are insufficient. Detailed quantitative param-

eterization of the conditions is needed to determine the first mu-

tants that will dominate the initial evolution and the distribution

of fitness effects (DFE) of potential beneficial mutations. For

example, if our EC had included a substantial stationary phase,

then the most fit IRA1-nonsense mutants would have had much

lower (perhaps even negative) fitness and would likely not have

been observed at all. More importantly, even subtle differences

in the DFE can lead to large differences in the relative abun-

dance of adaptive clones during evolution because differences

in fitness accumulate exponentially with time. Quantitatively, a

0.6 change in the per-cycle fitness of a mutant, which is the

value of the accrued respiration-dependent components of

some of our mutants, would change its abundance at the

time point at which our mutants were chosen by a factor of

�1,000. Furthermore, changes in the DFE lead to different

genetic backgrounds for future evolution, which can change

evolutionary trajectories through both epistasis and via envi-

ronmental feedback changing how phenotypic changes are

selected.

Much of the sensitivity to conditions we observed appears due

to the periodic nature of the environment. All adaptive lineages

(except pure diploids) took advantage of the consistent transfer

into fresh media via mutations that appear to reduce lag phase.

This is underscored by the trade-off in stationary phase: when

experiencing conditions that were not part of the EC, these line-

ages were ill-prepared and had severe fitness defects. These

sorts of complex trade-offs may be common in evolution with

constant as well as periodic conditions [41, 42]. Mutations can

be selected for within the narrow range of external pressures

felt by the organism, and they may carry unknown and unpre-

dictable costs, even in seemingly very similar environments.

Whereas beyond the scope of this study, it will be interesting

to quantify how adaptive mutations that are selected for in

predictable environments differ from those selected in varying
conditions. One might predict that varying conditions would

select for smaller effect mutations that show fewer trade-offs.

Quantifying these differences would in part require understand-

ing the joint distribution of fitness effects of various mutations

over different environments—this can now be straightforwardly

measured using our approach.
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Arslan, A., Van Pee, M., van der Zande, E., Meert, W., Yang, Y., et al.

(2015). Adaptation to high ethanol reveals complex evolutionary path-

ways. PLoS Genet. 11, e1005635.

14. Yona, A.H., Manor, Y.S., Herbst, R.H., Romano, G.H., Mitchell, A., Kupiec,

M., Pilpel, Y., and Dahan, O. (2012). Chromosomal duplication is a tran-

sient evolutionary solution to stress. Proc. Natl. Acad. Sci. USA 109,

21010–21015.
10 Current Biology 28, 1–11, February 19, 2018
15. Long, A., Liti, G., Luptak, A., and Tenaillon, O. (2015). Elucidating the mo-

lecular architecture of adaptation via evolve and resequence experiments.

Nat. Rev. Genet. 16, 567–582.

16. Vitti, J.J., Grossman, S.R., and Sabeti, P.C. (2013). Detecting natural se-

lection in genomic data. Annu. Rev. Genet. 47, 97–120.

17. Gerstein, A.C., and Otto, S.P. (2011). Cryptic fitness advantage: diploids

invade haploid populations despite lacking any apparent advantage as

measured by standard fitness assays. PLoS ONE 6, e26599.

18. Vasi, F., Travisano, M., and Lenski, R.E. (1994). Long-term experimental

evolution in Escherichia coli. II. Changes in life-history traits during adap-

tation to a seasonal environment. Am. Nat. 144, 432–456.

19. Plourde-Owobi, L., Durner, S., Goma, G., and François, J. (2000).

Trehalose reserve in Saccharomyces cerevisiae: phenomenon of trans-

port, accumulation and role in cell viability. Int. J. Food Microbiol. 55,

33–40.

20. Shi, L., Sutter, B.M., Ye, X., and Tu, B.P. (2010). Trehalose is a key deter-

minant of the quiescent metabolic state that fuels cell cycle progression

upon return to growth. Mol. Biol. Cell 21, 1982–1990.

21. Sillj�e, H.H.W., Paalman, J.W.G., ter Schure, E.G., Olsthoorn, S.Q.B.,

Verkleij, A.J., Boonstra, J., and Verrips, C.T. (1999). Function of trehalose

and glycogen in cell cycle progression and cell viability in Saccharomyces

cerevisiae. J. Bacteriol. 181, 396–400.

22. Landry, C.R., Townsend, J.P., Hartl, D.L., and Cavalieri, D. (2006).

Ecological and evolutionary genomics of Saccharomyces cerevisiae.

Mol. Ecol. 15, 575–591.

23. François, J., Neves, M.J., and Hers, H.G. (1991). The control of trehalose

biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inac-

tivation and repression of trehalose-6-phosphate synthase and trehalose-

6-phosphate phosphatase. Yeast 7, 575–587.

24. Lillie, S.H., and Pringle, J.R. (1980). Reserve carbohydrate metabolism in

Saccharomyces cerevisiae: responses to nutrient limitation. J. Bacteriol.

143, 1384–1394.

25. Cannon, J.F., and Tatchell, K. (1987). Characterization of Saccharomyces

cerevisiae genes encoding subunits of cyclic AMP-dependent protein ki-

nase. Mol. Cell. Biol. 7, 2653–2663.

26. Cebollero, E., and Reggiori, F. (2009). Regulation of autophagy in yeast

Saccharomyces cerevisiae. Biochim. Biophys. Acta 1793, 1413–1421.

27. Chang, Y.W., Howard, S.C., Budovskaya, Y.V., Rine, J., and Herman, P.K.

(2001). The rye mutants identify a role for Ssn/Srb proteins of the RNA po-

lymerase II holoenzyme during stationary phase entry in Saccharomyces

cerevisiae. Genetics 157, 17–26.

28. Breviario, D., Hinnebusch, A., Cannon, J., Tatchell, K., and Dhar, R. (1986).

Carbon source regulation of RAS1 expression in Saccharomyces cerevi-

siae and the phenotypes of ras2- cells. Proc. Natl. Acad. Sci. USA 83,

4152–4156.

29. Dejean, L., Beauvoit, B., Alonso, A.-P., Bunoust, O., Gu�erin, B., and

Rigoulet, M. (2002). cAMP-induced modulation of the growth yield of

Saccharomyces cerevisiae during respiratory and respiro-fermentative

metabolism. Biochim. Biophys. Acta 1554, 159–169.

30. van Leeuwen, J., Pons, C., Mellor, J.C., Yamaguchi, T.N., Friesen, H.,

Koschwanez, J., U�saj, M.M., Pechlaner, M., Takar, M., U�saj, M., et al.

(2016). Exploring genetic suppression interactions on a global scale.

Science 354, aag0839.

31. Wenger, J.W., Piotrowski, J., Nagarajan, S., Chiotti, K., Sherlock, G., and

Rosenzweig, F. (2011). Hunger artists: yeast adapted to carbon limitation

show trade-offs under carbon sufficiency. PLoS Genet. 7, e1002202.

32. Parts, L., Cubillos, F.A., Warringer, J., Jain, K., Salinas, F., Bumpstead,

S.J., Molin, M., Zia, A., Simpson, J.T., Quail, M.A., et al. (2011).

Revealing the genetic structure of a trait by sequencing a population under

selection. Genome Res. 21, 1131–1138.

33. Brown, J.A., Sherlock, G., Myers, C.L., Burrows, N.M., Deng, C., Wu, H.I.,

McCann, K.E., Troyanskaya, O.G., and Brown, J.M. (2006). Global anal-

ysis of gene function in yeast by quantitative phenotypic profiling. Mol.

Syst. Biol. 2, 2006.0001.

http://refhub.elsevier.com/S0960-9822(18)30011-3/sref1
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref1
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref1
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref2
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref2
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref2
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref2
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref3
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref3
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref3
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref4
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref4
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref4
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref5
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref5
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref5
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref6
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref6
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref6
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref7
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref7
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref7
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref8
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref8
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref8
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref9
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref9
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref9
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref9
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref9
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref10
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref10
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref10
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref10
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref10
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref11
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref11
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref11
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref12
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref12
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref12
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref12
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref12
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref13
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref13
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref13
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref13
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref14
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref14
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref14
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref14
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref15
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref15
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref15
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref16
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref16
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref17
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref17
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref17
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref18
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref18
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref18
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref19
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref19
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref19
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref19
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref20
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref20
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref20
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref21
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref21
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref21
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref21
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref21
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref22
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref22
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref22
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref23
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref23
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref23
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref23
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref24
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref24
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref24
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref25
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref25
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref25
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref26
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref26
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref27
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref27
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref27
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref27
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref28
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref28
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref28
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref28
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref29
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref29
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref29
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref29
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref29
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref30
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref30
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref30
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref30
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref30
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref30
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref31
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref31
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref31
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref32
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref32
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref32
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref32
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref33
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref33
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref33
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref33


Please cite this article in press as: Li et al., Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions, Current Biology (2018),
https://doi.org/10.1016/j.cub.2018.01.009
34. Dudley, A.M., Janse, D.M., Tanay, A., Shamir, R., andChurch, G.M. (2005).

A global view of pleiotropy and phenotypically derived gene function in

yeast. Mol. Syst. Biol. 1, 2005.0001.

35. Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., V�eronneau, S., Dow,

S., Lucau-Danila, A., Anderson, K., Andr�e, B., et al. (2002). Functional

profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

36. Deutschbauer, A., Price, M.N., Wetmore, K.M., Tarjan, D.R., Xu, Z., Shao,

W., Leon, D., Arkin, A.P., and Skerker, J.M. (2014). Towards an informative

mutant phenotype for every bacterial gene. J. Bacteriol. 196, 3643–3655.

37. Hillenmeyer, M.E., Fung, E.,Wildenhain, J., Pierce, S.E., Hoon, S., Lee,W.,

Proctor, M., St Onge, R.P., Tyers, M., Koller, D., et al. (2008). The chemical

genomic portrait of yeast: uncovering a phenotype for all genes. Science

320, 362–365.

38. Wiser, M.J., Ribeck, N., and Lenski, R.E. (2013). Long-term dynamics of

adaptation in asexual populations. Science 342, 1364–1367.

39. Poltak, S.R., and Cooper, V.S. (2011). Ecological succession in long-term

experimentally evolved biofilms produces synergistic communities. ISME

J. 5, 369–378.

40. Bono, L.M., Smith, L.B., Jr., Pfennig, D.W., and Burch, C.L. (2017). The

emergence of performance trade-offs during local adaptation: insights

from experimental evolution. Mol. Ecol. 26, 1720–1733.
41. Schick, A., Bailey, S.F., and Kassen, R. (2015). Evolution of fitness trade-

offs in locally adapted populations of Pseudomonas fluorescens. Am. Nat.

186 (Suppl 1 ), S48–S59.

42. Kryazhimskiy, S., Rice, D.P., Jerison, E.R., and Desai, M.M. (2014).

Microbial evolution. Global epistasis makes adaptation predictable

despite sequence-level stochasticity. Science 344, 1519–1522.

43. DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl,

C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011).

A framework for variation discovery and genotyping using next-generation

DNA sequencing data. Nat. Genet. 43, 491–498.

44. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K.,

Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and

DePristo, M.A. (2010). The Genome Analysis Toolkit: a MapReduce frame-

work for analyzing next-generation DNA sequencing data. Genome Res.

20, 1297–1303.

45. Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G.,

Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al.

(2013). From FastQ data to high confidence variant calls: the Genome

Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43,

11.10.1–11.10.33.
Current Biology 28, 1–11, February 19, 2018 11

http://refhub.elsevier.com/S0960-9822(18)30011-3/sref34
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref34
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref34
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref35
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref35
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref35
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref35
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref35
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref36
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref36
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref36
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref37
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref37
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref37
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref37
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref38
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref38
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref39
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref39
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref39
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref40
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref40
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref40
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref41
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref41
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref41
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref41
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref42
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref42
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref42
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref43
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref43
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref43
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref43
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref44
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref44
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref44
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref44
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref44
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref45
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref45
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref45
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref45
http://refhub.elsevier.com/S0960-9822(18)30011-3/sref45


Please cite this article in press as: Li et al., Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions, Current Biology (2018),
https://doi.org/10.1016/j.cub.2018.01.009
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

OneTaq 2X Master Mix with Standard Buffer New England Biolabs Cat#M0482L

PrimeSTAR MAX DNA Polymerase Takara Clontech Cat#R045B

10XCutSmart buffer New England Biolabs Cat#B7204S

ApaLI restriction enzyme New England Biolabs Cat#R0507S

Critical Commercial Assays

Zymo YeaStar Genomic DNA kit Zymo Research Cat#D2002

Nextera TD buffer and TDE1 enzyme Illumina Cat#FC-121-1030

KAPA HiFi Library Amplification Kit KAPA Biosystems Cat#KK2612

Agencourt AMPure XP magnetic beads Beckman Coulter Cat#A63880

QIAquick PCR purification kit QIAGEN Cat#28106

Qubit HS DNA quantitation kits ThermoFisher Cat#Q-33120

Megazyme Trehalose kit Megazyme Cat#K-TREH

Megazyme D-Glucose-HK kit Megazyme Cat#K-GLUHK-110A

Megazyme Ethanol kit Megazyme Cat#K-ETOH

Deposited Data

All Illumina sequencing data for both the whole-genome

sequencing and the fitness measurement assays

This paper https://www.ncbi.nlm.nih.gov/

bioproject/PRJNA388215/

S. cerevisiae (strain S288C) reference genome, version

R64-1-1

Saccharomyces Genome

Database (SGD)

http://www.yeastgenome.org

S. cerevisiae reference genome that includes the DNA

barcode locus: sacCer3 S288C

[6] https://www.ncbi.nlm.nih.gov/

bioproject/?term=PRJNA310010

Experimental Models: Organisms/Strains

S. cerevisiae YFP-tagged ancestor strain [6] GSY5306

S. cerevisiae neutral strain with ApaLI restriction

site in barcode, used for pooled fitness assay

[12] GSY5929

Oligonucleotides

Primers used to amplify the barcode region [12] See Data S5

Software and Algorithms

GATK version 3.2.2 [43, 44] N/A

CLC Genomics Workbench version 8.5 QIAGEN http://www.clcbio.com

Pipeline to determine the number of barcode reads [12] https://github.com/sunthedeep/

BarcodeCounter

Pipeline to calculate fitness using barcode measurements [12] https://github.com/barcoding-

bfa/fitness-assay-python

Other

Coulter Z2 particle counter Beckman N/A

500mL DeLong flasks Bellco Cat#2510-00500

2mL yellow phase lock tube 5 PRIME Cat#2302830

E-Gel SizeSelect agarose gels ThermoFisher Cat#G661002
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information regarding the manuscript and requests for reagents may be directed to, and will be fulfilled by the lead contact,

Gavin Sherlock (gsherloc@stanford.edu).
e1 Current Biology 28, 1–11.e1–e6, February 19, 2018

mailto:gsherloc@stanford.edu
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388215/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388215/
http://www.yeastgenome.org
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA310010
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA310010
http://www.clcbio.com
https://github.com/sunthedeep/BarcodeCounter
https://github.com/sunthedeep/BarcodeCounter
https://github.com/barcoding-bfa/fitness-assay-python
https://github.com/barcoding-bfa/fitness-assay-python


Please cite this article in press as: Li et al., Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions, Current Biology (2018),
https://doi.org/10.1016/j.cub.2018.01.009
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The yeast strains used in this study can be grown and maintained using standard methods (e.g., YPD media in test tubes, glycerol

stocks for long term storage at �80�C), but should be propagated in the selection environment (glucose limited minimal media – M3

medium) for optimal phenotypic and fitness measurements. We refer to the 5x Delft media with 4% ammonium sulfate and 1.5%

dextrose [6] as M3 medium in this manuscript.

Twelve evolved strains and aWT strain were assayed in both monocultures and pairwise competition assays. Ten out of the twelve

evolved strains are haploids and harbor mutations in CYR1, GPB1, GPB2, IRA1, IRA2, KOG1, PDE2, RAS2 and TOR1. Two IRA1

haploid mutants with different mutation types (missense and nonsense) were tested. The other two tested strains were a diploid

with no additional mutations (‘‘pure’’ diploid) and a diploid with an additional mutation in SCH9 (SCH9+Diploid) (see detailed infor-

mation of tested strains in Table S1). Note that the strains IRA1-NONSENSE, RAS2 and SCH9+Diploid carry additional mutations

outside of the genes listed here (see Data S4 for details). The genes in which these additional mutations occur only appear mutated

once each across the whole set of sequencedmutant lineages and thus are less likely than those in multiply-hit genes to be adaptive

under the EC. The fitness profile for this IRA1-NONSENSE lineage is similar to that of other IRA1-NONSENSE lineages supporting this

hypothesis.

All high-throughput barcode fitness measurements were conducted by competing the pool of 4,800 evolved barcoded clones

described in [12] against a constructed ancestral clone [12] which carries a restriction site in the barcode. Briefly, this pool was con-

structed by picking 4,800 individual single colonies that had been plated out from frozen samples of the two replicate evolution

experiments of [6] at generation 88, and then pooling these clones into a single culture. The pool culture was mixed with glycerol

(17% glycerol in final concentration), aliquoted into 1.5ml Eppendorf tubes and stored at �80�C.
Lineages carryingmutations in Ras/PKA pathway genes or TOR/Sch9 pathway genes are referred to as nutrient response pathway

mutants in this work: RAS2, GPB1, GPB2, PDE2, IRA1, CYR1, TFS1, SSK2 and YAK1 gene are involved in Ras/PKA signaling

pathway; SCH9, TOR1, KOG1 andMDS3 are involved in TOR/Sch9 signaling pathway. If a mutant harbors more than one mutation,

as long as one of the mutations is located in above genes, it is classified as a nutrient response pathway mutant in this work.

METHOD DETAILS

Pre-culture test strains
Strains were streaked out from freezer stocks onto M3 agar plates and grown for 3 days until colonies were visible. A single colony

was used to inoculate 3mL of M3medium, which was grown for 48 hr (30�C roller drum). After saturation, 400ml was used to inoculate

EC pre-cultures (100mL M3 media in 500mL Delong flasks, 223 RPM 30�C), which were grown for 48 hr.

Monoculture measurements
Monoculture growth measurements over a 48-hour growth cycle were conducted in two independent replicates, which were per-

formed on different days with independent single colony isolates. We assayed 12 evolved strains and a WT strain in both replicates

(see EXPERIMENTAL MODEL AND SUBJECT DETAILS for strain information). Cells were precultured as described above, then for

each clone, 5e+7 cells (as measured by a Beckman Coulter Z2 particle counter) were transferred into a fresh evolution condition flask

(100mLM3media in 500mL Delong flasks, 223 RPM 30�C) and the culture was tracked throughout the 48 hr growth cycle for various

attributes. We sampled �300ml of cell culture every two hr starting at eight hr of growth (the cell density was too low for accurate

measurements prior to eight hr), measured cell number and cell size using the Coulter counter and collected �200ml supernatant

from the sampled cell culture for glucose and ethanol concentration measurements. Bio-volume was calculated by computing the

weighted average cell size using the cell size distribution measured by the particle counter and multiplying the weighted average

cell size by the total cell number. An additional 1mL of cell culture was sampled at 20, 22, 32 and 48 hr for cellular trehalose concen-

tration measurements. Cellular trehalose concentrations were measured using the Megazyme Trehalose kit (Megazyme K-TREH),

while glucose and ethanol concentrations in cell culture were measured using the Megazyme D-Glucose-HK kit (Megazyme

K-GLUHK-110A) and Megazyme Ethanol kit (Megazyme K-ETOH), respectively. Except for ethanol measurements, all measure-

ments were conducted in both independent replicates/growth cycles. Due to the technical difficulties in accurately measuring resid-

ual ethanol in cell culture, we only measured ethanol concentration in one replicate. Some clones showed a glucose concentration

slightly higher than 1.5% at eight hr – 1.5% is the starting glucose concentration of the M3medium, which could be caused by either

measurement errors or variation in medium preparation; this may underlie batch effects we observed in barcode fitness measure-

ments. All raw measurement data are shown in Data S1 (sheet 1 - 11). The batch effects of the cell number, bio-volume and glucose

concentration measurements between these two independent replicates are similar to those observed in our previous work [12].

Trehalose per unit of cell volume was calculated by dividing trehalose measurements by median cell size measurements at the

same time point. Averaged trehalose per unit of cell volume over two batches was used for analysis. However, due to the unusually

slow growth of the WT control in replicate 1, only the WT control in replicate 2 was used when calculating trehalose per unit of cell

volume. Median cell size measurements at 46 and 48 hr are averaged and used as the cell size at the end of the growth cycle.
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Viability measurement
Twelve evolved strains plus a WT strain (see EXPERIMENTAL MODEL AND SUBJECT DETAILS for strain information) were pre-

cultured as described above. For each clone, 5e+7 cells (as measured by a Beckman Coulter Z2 particle counter) were transferred

into a fresh evolution condition flask (100mL M3 media in 500mL Delong flasks, 223 RPM 30�C), the exact same condition as the

monoculture measurements, and the culture was tracked for a total of six days. We measured viability every 24 hr starting at 48h

by sampling the cell culture, diluting the cells by 1e+5 and plating 150mL of diluted cells onto YPD+AT agar plates. Plates were scored

for the number of viable colonies after 2 days of growth at 30�C. The expected number of colonies was estimated using the Beckman

Coulter Z2 particle counter of the cell culture at the time of plating. The observed colony number was then divided by the expected

number, to calculate viability.

Pairwise competition growth curves
Twelve evolved strains plus a WT strain (see EXPERIMENTAL MODEL AND SUBJECT DETAILS for strain information) and a YFP-

tagged ancestor [6] were pre-cultured as described above. We then mixed each pre-cultured clone with the YFP-tagged ancestor

at a 1:9 ratio and performed high-resolution pairwise competition assays between these evolved strains (Data S1, sheet 13

and 14) plus the WT strain and the YFP-tagged ancestor. The pairwise competition population was sampled every two hours across

two successive growth cycles, whichwas a total of 96 hr. Two independent replicates were conducted as described above, with each

replicate being tracked over two successive growth cycles, which gave us a high-resolution frequency trajectory for evolved strains

over four total cycles. The relative frequencies of the evolved and YFP strains were estimated as described [6]. Due to errors in the

flow cytometry calibration during the first cycle of replicate 1, we had only three, rather than four cycles of usable data. In addition,

measurements at 48h in replicate 2 were discarded as they were low quality and were replaced with the 46h measurements.

High-throughput fitness measurements
All high-throughput barcode fitness measurements were conducted using the pool of 4,800 evolved clones (see EXPERIMENTAL

MODEL AND SUBJECT DETAILS for detailed information). Fitness measurements were conducted under a number of different

growth regimens, each of which was a variant of our previously used ‘‘evolutionary condition’’ (EC) regimen [6]. Briefly, the EC

regimen was as follows: 400mL of saturated cell culture (�5e+7 cells) were inoculated into 100mL of M3 (minimal, glucose-limited)

medium in 500mL DeLong flasks and grown at 30�C in an incubator shaken at 223 RPM; the population was diluted to 5e+7 cells

every 48 hr (2 days) into fresh M3 medium, resulting in�8 generations of growth every 48 hr. The various differing growth conditions

used for the fitness measurements in this study are described in Figure 3. Details of the varying growth conditions are listed in

Table S2.

All conditions are variations of the EC regimen (see Results for details), and parameters were identical to the EC except where

noted. In preliminary experiments, we determined that each generation during the fermentation growth phase took about two hours

under our growth conditions (data not shown), so for conditions in Batch A and Batch B (see Table S2), we modulated the transfer

time between growth cycles appropriately to maintain a consistent amount of growth time during respiration. Note, the fitness mea-

surements in the EC itself were previously reported [12]. Before fitness assays, a tube of the 4,800 clone pool was thawed and

cultured in the EC condition for two days to acclimate the yeast cells to the experimental condition after recovery from being frozen;

cells reached saturation after this two-day growth. All fitness assays were conducted by mixing the saturated culture of the 4,800

clone pool with a pre-cultured ancestral clone (as described above) in a 1:9 ratio (time 0), and growing this mixture for four successive

growth/dilution cycles under the appropriate condition (time points 1, 2, 3 and 4). The fitness measurement assays were thus

sampled five times, at time 0 before the beginning of the assay, and at the end of each of the four growth/dilution cycles. For

each sampling, cells were spun down, mixed with sorbitol solution (0.9M sorbitol, 0.1M Tris-HCL pH 7.5, 0.1M EDTA pH 8.0)

and stored at �80�C for future genome extraction and barcode region amplification [12]. The frequencies of each of the lineages

were tracked by Illumina sequencing of the DNA barcodes, which were then used to estimate their frequencies in the population

as a whole [12].

All fitness measurements were performed with 2-3 replicates, and were conducted for 4 growth cycles. Fitness assays were

conducted under nine unique test conditions and were divided into four batches (Table S2). Assays in each batch were performed

independently with a different aliquot of the 4,800 clone pool and a different ancestral clone picked on different days. All batches of

experiments contained one set of measurements in the EC to account for systematic effects between experimental batches, except

for the long-cycle length (batch D) measurements, where the EC does not overlap much temporally with the other growth conditions

in the batch (Table S2).

Whole-genome sequencing
Library preparation, whole-genome sequencing and analysis were conducted as previously described [12]. Briefly, we generated

low-volume Nextera libraries [42], and identified small variants (SNPs and short indels) using the GATK [43–45] and large structural

variants using CLC Genomics Workbench.

78 adaptive haploids and 22 high fitness diploids were previously sequenced [12] with beneficial mutations successfully identified

in 76 adaptive haploids and 16 high fitness diploids. 25 adaptive haploids were sequenced in this work, with candidate beneficial

mutations successfully identified in 24 of them. The sequenced clones with no identified candidate beneficial mutations are labeled

as ‘‘Other’’ on the PCA plot and in Data S3. Details can be found in Data S4.
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QUANTIFICATION AND STATISTICAL ANALYSES

Monoculture fitness estimation and challenges
Cell number was measured in monocultures under the original EC. Linear models were fit to log(mutant cell number) - log(WT cell

number), and the slopes were used to infer the relative growth rates (per hour). Measurements from 10h to 16h were used to infer

fermentation growth rates, and measurements from 24h to 48h were used to estimate respiration growth rates. The average of

the relative growth rates over two independent replicates (equal to two growth cycles) were used in this manuscript. The relative

growth rate error was estimated as the difference of the relative growth rate between the two replicates.

The monoculture cell number measurements were also used to estimate the lag phase fitness advantage. By linearly extrapolating

the exponential growth back to the starting cell number, we gained a rough estimate of the time spent in lag. We also estimated the

difference in fitness by comparing the log ratio of the cell numbers at an early time-point, given that all cultures were inoculated with

the same number of cells. We used data from both growth cycles of the monoculture experiments to make this estimate of the lag

fitness. We used the 8h, 10h, and 12h time-points to estimate the cell number at 8h via log-linear extrapolation, then computed the

difference in log cell numbers to find the relative effects of the lag phase. The fitness advantages were measured relative to the WT

control in replicate 2. The averaged lag phase fitness estimations over two replicates were used.

In addition to issues noted in themain text itself, the inference of fitness from themonoculture data depends on an implicit model of

the population dynamics, for example, the growth data are not strictly log-linear, and there is curvature near both the lag end and the

diauxic shift (Figures S1A and S1B), which affects the fit. Even without these fundamental problems, the monoculture measurements

are systematically different between replicates (Data S2), causing large uncertainties in the inferred parameters and limiting their

utility.

Relative viability estimation
Twelve evolved strains plus a WT strain (see EXPERIMENTAL MODEL AND SUBJECT DETAILS for strain information) were cultured

in monoculture for viability measurements. The number of viable cells which formed colonies on plates was divided by the expected

number measured by Coulter Counter to calculate viability: the fraction of clones that are viable. Linear models were fit to log(viability

of adaptive clones) – log(viability of WT clone) to infer the relative viability loss of the adaptive clones.

Fitness estimation using pairwise competition data
Twelve evolved strains plus aWT strain (see EXPERIMENTALMODELANDSUBJECTDETAILS for strain information) were competed

pairwise with a YFP-tagged ancestor. We computed the cumulative fitness advantage of our test clones relative to the YFP tagged

ancestor via the equationC(t) = log{F(T)/[1-F(T)]} – log{F0/[1-F0]}, where F(T) is a lineage’s frequency at time T andF0 is a lineage’s initial

frequency at time 0. The expression for C(t) can be obtained by integrating the logistic growth function df/dt = s(t)(1-f)f, the basicmodel

for competition between individuals with time-dependent fitness difference s(t). Frequency measurements at 48h were regarded as

time 0 for the 2nd growth cycle of replicate 1. We used fitness differences from 0 hr to 4 hr, from 4 hr to 20 hr and from 20 hr to 48 hr to

estimate the components of fitness from lag phase, fermentation and respiration respectively. We reported the average of the fitness

components over all three growth cycles, with error given by the sample standard deviation.We estimated the total fitness change per

cycle as log[F46h/(1-F46h)] – log[F0/(1-F0)] for the 1st growth cycle in replicate 2, and by log[F94h/(1-F94h)] – log[F46h/(1-F46h)] for the

2nd growth cycle in replicates 1 and 2. The per-cycle fitness was calculated by averaging fitness change per cycle across all 3 cycles.

In addition, to decreasemeasurement noise, amovingwindow-based approachwas used to estimate per-cycle fitness frompairwise

competition assays. In replicate 2, each test clone’s frequency measurements from 20 hr to 46 hr were averaged and used as its start

frequency; each clone’s frequencymeasurements from 68 hr to 96 hr were averaged and used as its end frequency. Per-cycle fitness

was estimated using the same equation with the averaged start frequency and end frequency described above. The per-cycle fitness

estimates between these two different approaches are similar to each other (mean difference = 0.037 and Pearson’s r = 0.98). The

averaged fitness change per-cycle across all 3 cycles was used for our analyses.

High-throughput barcode fitness estimation
High-throughput barcode fitness measurements with the 4,800 clone evolved pool (see EXPERIMENTAL MODEL AND SUBJECT

DETAILS for detailed information) were conducted under nine unique test conditions; the nine conditions were divided into four

batches (see Table S2). Fitness measurements under each condition were performed with 2-3 replicates, and were conducted

for 4 growth cycles. The frequencies of each of the lineages were tracked by Illumina sequencing of the DNA barcodes, which

were then used to estimate their frequencies in the population as a whole, as previously described [12].

Fitness under a certain growth regimenwas estimated using lineages’ frequency change over growth cycles under this regimen, as

previously described [12]. Fitness under conditions with varying dilution rate (batch A and B in Table S2) was estimated using

frequency data from time-points 1, 2, 3 and 4. Fitness under conditions with varying cycle length (batch C and D in Table S2) was

estimated using frequency data from time points 0, 1, 2, and 3. Estimates were combined across the 2-3 replicates for each growth

regimen using inverse variance weighting. The source code for computing these fitness estimates can be found at https://github.

com/barcoding-bfa/fitness-assay-python.
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Removal of lineages from analysis
From our pool of 4,800 clones, a subset of lineages was removed from subsequent analyses due to the following four reasons: 1) all

lineages were cultured individually before they were pooled; however, some lineages did not grow and thus were not included in the

pool [12]; 2) lineages present in the starting pool but that presumably declined rapidly in frequency and were thus undetectable under

any condition were not included; 3) lineages with fitness estimation errors larger than 0.5 per cycle under any test condition were not

included; and 4) lineages with an ambiguous ploidy designation (for details about ploidy identification see [12]) were not included.

3,048 lineages remained after these removals and were used for subsequent analyses described in this work.

Classification of strains
The 3,048 lineages with high-quality fitness measurements in the pool were classified into four groups, based on their ploidy and

fitness: neutral haploids, adaptive haploids, diploids presumed (or found from sequencing) to have no additional adaptive mutations

(‘‘pure’’ diploids), and diploids with additional adaptive mutations (high fitness diploids). Lineages were grouped first by their ploidy

(haploid or diploid; see [12]), then by their fitness assay data to determine which lineages were likely to contain adaptive mutations

other than diploidization events. Under our modeling assumptions, lineages’ fitness estimates were assumed to be Gaussian distrib-

uted with an estimated standard deviation s, which were supported by analysis of the neutral haploids and pure diploids [12]. Adap-

tive haploids were defined as lineages that had low probability (p < 1e-3) of having fitness of 0 or less in at least two conditions. Using

this approach, 144 adaptive haploid lineages and 1,464 effectively-neutral haploid lineageswere identified. High fitness diploids were

defined as diploid lineages with additional adaptive mutations that had low probability (p < 1e-3) of having fitness less than the

mean fitness of the diploid class in at least two conditions. The mean fitness of the diploid population was calculated using inverse

variance weighting, then 40 high fitness diploid and 1,400 ‘‘pure’’ diploid lineages were identified using the above approach. The pure

diploids havemeasured fitness averaging about 0.2 per cycle, while the high fitness diploids have fitnesses mostly in the range 0.3 to

0.8 (5th to 95th percentile). The vast majority of the adaptive haploids carry mutations in the Ras/PKA or TOR/Sch9 nutrient response

pathways with per-cycle fitness ranging from 0.1 to 1.1 (5th to 95th percentile) [12].

Quantification of fitness components
We measured lineages’ fitness under two sets of systematically varied conditions where the length of the fermentation, respiration

and stationary phases were changed independently (Figure 3; see Table S2), and used these measurements to quantify the fitness

contribution from the three different growth phases. Specifically, we estimated fitness change per generation during the fermentation

phase, fitness change per hour during the respiration phase and fitness change per hour during the stationary phase for each indi-

vidual lineage in the pool. To do this, we fit a number of weighted linear models using the estimated fitness of the lineage under

different conditions. All weighted models used inverse variance weighting, as under our modeling assumptions the inferred fitness

values are Gaussian distributed. Note: this choice will lead to roughly equal weights for the high fitness lineages, which don’t obey the

Gaussian assumption, as their error is dominated by a multiplicative noise term that is consistent across experiments.

We estimated the per generation fitness by fitting a weighted linear model to the per-cycle fitness against the estimated number of

generations per growth cycle (log2 of the dilution factor) (fermentation-dependent fitness change rate). Note that during fermentation,

each generation equals about two hr. We similarly estimated the rate of fitness change per hour during the respiratory growth phase

(respiration-dependent fitness change rate) using fitness measurements from experiments with 24h and 48h growth cycles (as the

cells undergo respiratory growth between 20 and 60h), and the fitness change per hour during stationary phase (stationary-depen-

dent fitness change rate, called stationary-dependent rate in the main text) using the fitness measurements from the experiments

with 72h, 96h, 120h and 168h growth cycles. We estimated fitness components using the fitness change rate estimates: fermenta-

tion-dependent component = fermentation-dependent fitness change rate x 8 generations; respiration-dependent component =

respiration-dependent fitness change rate x 28 hr. We made this choice of measurements in order to avoid excess correlation be-

tween the respiration and stationary rate measurements; the 72h experiment shares its first time-point with the 96h, 120h, and 168h

experiments. If we use only the 96h, 120h, and 168h growth cycles for the stationary phase and include the 72h experiment in the

respiratory phase inference (extrapolating back to 60h where respiration actually ends), the stationary fitness change rate between

the two estimates with/without 72h growth cycle on average differ 0.001 per hour with a Pearson correlation 0.88; the respiration

fitness change rate between the two estimates with/without 72h growth cycle on average differ 0.004 per hour (0.11 per cycle under

the EC) with a Pearson correlation 0.8. Despite the small quantitative change, no large qualitative change is observed and all of our

results hold (especially comparisons to the EC fitness).

The errors in the stationary-dependent fitness change rate were calculated directly from the weighted linear model. The respira-

tion-dependent fitness change rate was assumed to be the difference of two Gaussian distributed random variables, so its variance

was taken to be the sum of the variances of the individual measurements, scaled appropriately. Systematic deviations between the

two batches of experiments (Table S2) dominate the errors of the fermentation-dependent rate calculations. These deviations cause

enough of a kink in the fermentation fitness profiles that the standard linear regression machinery cannot be used to quantify errors in

the estimation. To understand the effects that systematic errors had on adaptive haploids, we plotted the fermentation rate as

computed from the full data against the rate computed from the 4, 6, and the 8 generation experiment from the same batch (Figures

S3B and S3C). The differences between the two fermentation rates are on the order of 0.01/gen. This suggests that the actual errors

are typically on the scale of 0.01/gen to 0.02/gen (0.1-0.15 per cycle in EC), as the partial data consist of about half the full data. To

test whether or not adaptive haploids had positive fermentation fitness, we performed a z-test with a significance level of p < 0.05
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using the conservative estimate of 0.02/gen for the errors on the fitness. This resulted in 56% of adaptive haploid lineages as having

a non-zero fermentation component. We performed the same test on the high fitness diploids, with 80% of them being called as

having a non-zero fermentation component. For the pure diploids, since we had a large number of putatively genetically identical

individuals, we performed a standard t test on the set of fermentation components and showed that the component was significantly

greater than 0 (p < 2.2e-16).

Accrued versus realized respiration benefits
Themagnitude of the accrued respiration-dependent component estimated from the barcode fitnessmeasurements is, for all but the

pure diploid and the GPB1 mutant, higher than the realized respiration component estimated from the pairwise competition assays

(Figure 6B). For example, for IRA1-missense, the barcode derived accrued respiration-dependent component is �0.35 higher than

the realized respiration component derived from the pairwise fitness competition. This corresponds to almost half an extra doubling

(e0.35 – 1 z0.42 divisions) compared to the ancestral type in the growth cycle, and it is not even the most extreme case. From the

monoculture data, we know that both ancestral and adaptive cells undergo only about half a division during respiration. Thus, adap-

tive clones are unlikely to gain almost half an extra division and derive the respiration-dependent component entirely through more

rapid division during respiration.

EC fitness
The EC fitness used in this work is from Table S2 in [12], where EC fitness was measured in four independent batches and reported

in both per generation units and per-cycle units: fitness per cycle = fitness per generation * 8. Fitness measurements from batch 1

were not used for any fitness component estimation in the current work. Batch 2 corresponds to batch C (respiration-dependent

component estimation) in the current work. Batches 3 and 4 correspond to batches A and B respectively (fermentation-dependent

component estimation) in the current work. Fitness estimates from monoculture (Figure 1) and pairwise competition (Figure 2) were

compared to weighted averaged per-cycle EC fitness from [12] using all four batches of EC fitness measurements. Fitness compo-

nent estimates from the barcode fitnessmeasurements (Figures 4 and 5) are compared only to EC fitness from batch 1 in the previous

work [12], to avoid spurious correlation between the estimated components and the estimated EC fitness in our analyses.

Correlation testing
For comparison of fitness and fitness components measured with different methods, we used Pearson correlation (Pearson’s r) since

the units of measurement were the same, and we had many data points. All confidence intervals were computed using bootstrap

percentiles due to the lack of an explicit model for most of our data.

Principal Components Analysis and clustering
The prcomp function in the software packageRwas used for Principal Component Analysis. The hclust and cutree functions in Rwere

used to cluster lineages into 6 different groups.

DATA AND SOFTWARE AVAILABILITY

Data resource
The accession number for the Illumina sequencing data (for both the whole-genome sequencing and the fitness measurement

assays) reported in this paper is NIH BioProject: PRJNA388215.

Software
The software repository for the barcode counting code can be found at https://github.com/sunthedeep/BarcodeCounter.

The source code for computing these fitness estimates can be found at https://github.com/barcoding-bfa/fitness-assay-python.
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