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SUMMARY

Adaptive evolution plays a large role in generating
the phenotypic diversity observed in nature, yet cur-
rent methods are impractical for characterizing the
molecular basis and fitness effects of large numbers
of individual adaptive mutations. Here, we used a
DNA barcoding approach to generate the geno-
type-to-fitnessmap for adaptation-driving mutations
from a Saccharomyces cerevisiae population exper-
imentally evolved by serial transfer under limiting
glucose. We isolated and measured the fitness of
thousands of independent adaptive clones and
sequenced the genomes of hundreds of clones. We
found only two major classes of adaptive mutations:
self-diploidization and mutations in the nutrient-
responsive Ras/PKA and TOR/Sch9 pathways. Our
large sample size and precision of measurement
allowed us to determine that there are significant
differences in fitness between mutations in different
genes, between different paralogs, and even be-
tween different classes of mutations within the
same gene.

INTRODUCTION

Adaptive evolution is a major driving force behind the observed
phenotypic diversity in nature (Darwin, 1872; reviewed in
Givnish, 2015; Soulebeau et al., 2015) and is of key importance
to many problems of biomedical interest, including cancer
(Greaves and Maley, 2012; Korolev et al., 2014; Landau et al.,
2013; Nowell, 1976) and the emergence of drug resistance (Da-
vies and Davies, 2010; Palmer and Kishony, 2013; Pennings,
2012; Toprak et al., 2011). To further understand the process

of adaptation, it is essential to obtain a large, statistically repre-
sentative number of individual adaptive events and determine
their fitness effects and molecular nature.
While there are many methods for identifying instances of

adaptive evolution in natural populations, they are not suitable
for a comprehensive analysis of the spectrum of mutations that
drive adaptation. Indeed, methods that infer selection in natural
populations (reviewed in Lachance and Tishkoff, 2013; Oleksyk
et al., 2010; Stinchcombe and Hoekstra, 2008; Vitti et al., 2013)
are typically unable to identify adaptive mutations with single
base-pair resolution, much less quantify the fitness effects of sin-
gle adaptive mutations. Mechanistic studies can be conducted
in genetically tractable systems where one can measure the
fitness effects of a set of engineered mutations (Bank et al.,
2015; Bozek et al., 2014; Fowler and Fields, 2014; Giaever
et al., 2002; Hietpas et al., 2013; De Meester et al., 2002; Rich
et al., 2016; Sliwa and Korona, 2005; Warringer et al., 2011;
Weinreich et al., 2006). However, mutations studied in such sys-
tems are typically limited to a small, artificial, and predominantly
deleterious subset of possible mutations, e.g., whole-gene
knockout mutations or deep mutational scanning of one or a
few genomic regions.
In principle, microbial experimental evolution provides an

excellent framework for the comprehensive study of adaptive
mutations due to the ease of both identifying adaptive mutations
and assaying their fitness by pairwise competition. Two experi-
mental evolution approaches for identifying large numbers of in-
dependent beneficial mutations are to either sequence multiple
isolates from populations evolved under identical conditions
(e.g., Barrick et al., 2009; Gresham et al., 2008; Kryazhimskiy
et al., 2014; Kvitek and Sherlock, 2011; Tenaillon et al., 2012;
reviewed in Dettman et al., 2012; Long et al., 2015), or to
conduct whole-population, whole-genome sequencing at multi-
ple time points during the evolution (Herron and Doebeli,
2013; Kvitek and Sherlock, 2013; Lang et al., 2013). However,
these approaches are limited to identifying only a subset of
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high-frequency and easy to sequence mutations. Moreover,
separating the adaptive mutations from those that are merely
hitchhiking remains a challenge (Voordeckers and Verstrepen,
2015). For example, in many studies the sequenced clones
were isolated after hundreds or thousands of generations to
ensure the presence of adaptive mutations, resulting in multiple
mutations per clone (Barrick et al., 2009; Kryazhimskiy et al.,
2014; Tenaillon et al., 2012). This makes it difficult to distinguish
adaptive mutations from hitchhikers and also precludes the
measurement of the fitness effects of individual beneficial muta-
tions in isolation. By contrast, whole-population genome
sequencing provides us only with the trajectories of easy to
sequencemutations that rise to high frequencies (>1%), at which
time they tend to be present in clones with multiple mutations,
and their behavior is driven by complex clonal interference dy-
namics (Desai and Fisher, 2007; Herron and Doebeli, 2013; Kvi-
tek and Sherlock, 2013); this prevents both the identification of
very low-frequency yet beneficial mutations and the precise esti-
mation of their individual or marginal selective effects. Finally,
fitness measurements are typically done in a low throughput,
pairwise fashion, precluding generation of a comprehensive ge-
notype-to-fitness map.

Here, we use our lineage tracking method (Levy et al., 2015) to
solve these technological limitations and characterize both the
genetic basis and fitness effects of hundreds of independent
adaptive mutations in a laboratory evolution experiment using
Saccharomyces cerevisiae. Using DNA barcodes as neutral
markers to track the frequencies of !500,000 independent line-

ages during an evolution experiment, Levy et al. (2015) identified
!25,000 lineages that gained an adaptivemutationwithin the first
168 generations of evolution. We have now isolated thousands of
clones fromasingleearly timepoint in thoseexperiments—apoint
at which we expect most adaptive lineages to carry single adap-
tive mutations—and identified their DNA barcodes. We then
pooled these clones and monitored their barcode frequencies
during short-term pooled growth. This allowed us to assign a
fitness value to each of the clones, within the context of a single
experiment. We then selected and sequenced the genomes of
hundreds of known adaptive clones with varying fitness effects,
as well as many neutral clones. Combining the sequencing and
fitnessmeasurements,we linked themolecular targets of adapta-
tion to their fitness effects and thus built a comprehensive geno-
type-to-fitness map of the mutations that drove initial adaptive
evolution in this system. Our results show that initial adaptation
under these conditions is overwhelmingly driven by two distinct
classes ofmutations,which together explain thebimodal distribu-
tion of fitness effects observed in Levy et al. (2015).

RESULTS

Isolation of Thousands of Evolved Clones and Parallel
Measurement of Their Fitness
We isolated 4,800 random, single-colony-derived clones from
frozen population samples taken at generation 88 from the Levy
et al. (2015) experimental evolutions (Figure 1A; Table S1):
3,840 clones were from evolution replicate E1 and 960 clones

Figure 1. Experimental Procedures to Select and Measure Fitness of Evolved Clones
(A) Schematic of isolation and identification of individual evolved yeast clones. We isolated 4,800 single colonies from generation 88 across both replicate

evolution experiments from Levy et al. (2015), determined their lineage barcodes, and stored them individually.

(B) Schematic of barcoded fitness measurement assay. We grew all 4,800 colonies individually (not shown) and pooled them. The pool was mixed with an

ancestral clone at a 1:9 ratio and the mixture was propagated for 32 generations in four independent batches (two to three replicates per batch). At each transfer

(every eight generations), we isolated DNA, amplified the barcodes, and conducted high-throughput sequencing to estimate the frequency trajectory of each

barcode. The inset graph shows the frequency trajectory of all lineages with fitness >"1%, where adaptive lineages are colored in red (darker red lineages are

more fit) and neutral lineages are colored in blue. Fitness was estimated using 24 generations of data from these frequency trajectories (see STARMethods). Raw

data for the sampled clones and their fitness measurements are in Tables S1, S2, and S3.

See also Figure S6 and Data S1.
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from replicate E2. Those evolutions were performed by serial
transfer in limiting glucose conditions, such that the populations
grew for eight generations each 48 hr growth/dilution cycle. The
sampling generation and number of clones were chosen specif-
ically to both maximize the fraction of clones with only a single
adaptive mutation and allow fitness measurement assays to be
cost-effective (see STAR Methods). We unambiguously deter-
mined the barcode sequence for 4,149 of the clones via Sanger
sequencing (see STAR Methods) and identified 4,009 unique
barcodes with 140 duplicates, consistent with random sampling
from the Levy et al. (2015) data.
To measure the fitness, s, of each of these clones, we con-

ductedfitnessmeasurements in asingle pooledassay (Figure 1B;
Tables S2 and S3). We grew each of the 4,800 clones indepen-
dently in liquid media and then pooled equal volumes of their
saturated cultures; this pool was then frozen as a stock culture
to use for all subsequent fitness measurements described in
this work, unless specified otherwise. For each assay, we re-
grew the pool from a frozen stock of !108 cells, then mixed it
1:9 with a population of the ancestral clone. We then propagated
this mixed population by serial transfer through four eight-gener-
ation cycles for a total of 32 generations under conditions iden-
tical to the original evolution experiment (Figure 1B); the starting
population size for eachcyclewas!53107 cells, large enough to
minimize drift. This design allowed us tomeasure the fitness rela-
tive to the ancestor of each of the 4,800 clones in the pool without
allowing substantial further adaptive evolution during the propa-
gation. These measurements were conducted with two to three
biological replicates across each of four different experimental
batches (experiments conducted on different days).
The frequency of each barcode was measured after each

transfer cycle by Illumina sequencing (see STAR Methods). We
detected 3,883 of the 4,009 unique lineage barcodes; clones
carrying the 126 missing barcodes may not have recovered
from the frozen stock in high enough numbers to establish and
thus were not present in the pool used for the fitness measure-
ments. We used the frequency measurements from three of
the four eight-generation cycles (for a total of 24 generations of
data) to estimate the fitness of the 3,883 clones. Details of the
fitness estimation, and extensive analysis of the fitnessmeasure-
ment errors and the batch effects are in the STAR Methods and
Figures S1, S2, S3, S4, and S5. The distribution of fitness effects
for all sampled lineages is shown in Figure S6.
The fitness values (s) reported throughout this work are the in-

verse variance-weighted mean and sample SEM across the four
batches of fitness measurements and are quoted, following
convention, as percent per generation. The fitness measure-
ments are consistent across replicates within batches (Figures
2A and S4) and between batches, although not to the same
extent (Figures 2B, 2C, and S5). Sources of error between the
replicates and batches include counting noise, caused by the
growth/bottleneck dynamics of the assay itself, and from sam-
pling and sequencing the DNA from the population, as well as
intrinsic experimental noise. In addition, there appear to be sys-
tematic deviations among the batches. Batch 2 showed the
largest systematic deviations (Figure S5), on the order of 6.5%
for high fitness lineages (s > 5%) rather than the 1%–2% devia-
tions for all other batches (Figures 2B and 2C), whichmay be due

to the slightly different measurement protocol used for this batch
when compared to the other batches (see STAR Methods).
Some deviations across the batchesmight be caused by slight

differences in the growth conditions between batches or may be
induced by different population compositions during the latter
growth cycles of the fitness assay. We considered the possibility
that a few lineages present at a substantial frequency in the pool
(13 lineages at 1%–8% frequency) could drive non-linear effects
at the latter growth cycles of the assay. To investigate this, we
created a pool of 500 of the barcoded clones, providing us
with a biological replicate of pooling and specifically avoiding
the introduction of the anomalously large lineages. We per-
formed the fitness assay as for the larger pool and found that
the fitness estimates remained largely unchanged (Figure 2D)
with similar systematic batch deviations, on the order of
!3.2% for high fitness lineages (s > 5%) (see STAR Methods).
This indicates that most of the among-batch variation is likely
to be driven by biological variability and not variation in the
pool composition or a few anomalously large lineages. Overall,
the systematic effects appear to be small compared to the
measured fitness values, and our analysis below controls for
the batch effect in all pairwise comparisons.
Our fitness measurements are consistent with those of Levy

et al. (2015) as reported for both the lineage tracking fitness es-
timates (Figure 2E) and pairwise competition assays of single
clones against a YFP-marked ancestor (Figure 2F). We suspect
that the deviations in fitness in these assays when compared
to our 4,800 pool estimates are largely due to batch effects,
although we cannot rule out fitness differences due to fre-
quency-dependent effects as the adaptive clones begin each
of these assays at a different starting frequency (see Levy
et al., 2015 and STAR Methods for details).
Note, a number of lineages were classified as adaptive by Levy

et al. (2015), while our isolated clones from those lineages
proved to be neutral and vice versa (highlighted in Figure 2E).
This is expected: adaptive mutants in lineages called adaptive
by Levy et al. (2015) should generally comprise the majority but
not all of the cells in their lineages. Thus, there will be instances
where the sampled isolate from a lineage does not have the
adaptive mutation. Conversely, some sampled isolates from lin-
eages called neutral by Levy et al. (2015) will have acquired an
adaptive mutation late enough in the evolution that the lineage
was not classified as adaptive. The pooled-clone fitness mea-
surements conducted in this study were thus critical for assign-
ing fitness effects to our isolated clones (see below).
We determined that 59% of our 3,883 sampled lineages were

adaptive (defined as s > 0% with 99% confidence); we refer to
these clones as ‘‘adaptive,’’ and the clones falling outside the
99% confidence level as ‘‘neutral.’’ This 59% adaptive fraction
is similar to the Levy et al. (2015) estimate of 50% adaptive line-
ages at generation 88.

Whole-Genome Sequencing
To determine the genetic basis of adaptation we conducted
whole-genome sequencing for 418 of the 3,883 unique barcoded
clones with assigned fitness estimates (see STAR Methods).
These included 333 adaptive clones, consisting of nearly every
sampled clone with s > 5% and many lower fitness clones
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(0% < s < 5%). To understand the spectrum of neutral mutations,
we also sequenced 85 neutral clones. Our sequenced clones
thus covered the entire range of observed fitness values (Fig-
ure S6, blue bars). We obtained!203 average and 53minimum
coverage for each clone. We called SNPs and short indels using
a GATK-based pipeline and manual curation, and larger struc-
tural variants were identified with CLC Genomics Workbench
(see STARMethods). Sanger sequencing of 57 randomly chosen
mutations that passed manual curation revealed no false posi-
tives (see STAR Methods). Across all clones (adaptive and
neutral), we identified a total of 445 mutations (Table 1; Table
S4; Data S1), including 352 point mutations, 44 insertion/deletion
events, 4 chromosomal aneuploidy events, and 45 transposable
element (TE) insertion events. A total of 211 clones (188 adaptive
clones) have more than one mutation.

Self-Diploidization Is an Adaptive Mechanism
In 83 adaptive clones, we observed the surprising presence of
unambiguous heterozygous mutations, suggesting that many
of the clones were diploid. To validate this, and to measure the
frequency of diploidy, we developed a high throughput method
to determine the ploidy of all 4,800 sampled clones, based on
Upshall et al. (1977) (see STAR Methods). This method takes
advantage of the stronger growth inhibition at 25"C of diploid
cells compared to haploid cells in media containing benomyl;
our assay was 99% concordant with flow cytometry ploidy anal-
ysis of a sample of !800 clones. Of the 4,800 clones, 43% from
evolution E1 and 60% from evolution E2 were diploid (Table S1).
We also performed mating assays (see STAR Methods) for
!1,200 randomly chosen clones, including haploids and diploids
from both E1 and E2, and found that every clone behaved as a

Figure 2. Fitness Measurements Are Consistent across Replicates and Techniques
(A) Comparison of fitness values for individual barcoded clones obtained from independent replicate assays conducted in the same experimental batch.

(B and C) Comparison of fitness values for individual barcoded clones obtained from independent experimental batches (averaged over all replicates within a

batch) of the fitness measurement assay. For (A)–(C), a small number of lineages with extreme fitness estimates in at least one replicate (s <#5% or s > 20%) are

not shown for increased resolution.

(D–F) A comparison of our fitness measurements using the 4,800 clone pool and (D) fitness measurements from a 500 clone pool, (E) to their barcode lineage

fitness measurements from the Levy et al. (2015) lineage tracking estimates, and (F) the pairwise fluorescence competition assay measurements, from Levy et al.

(2015). Note that the lineages we classified as neutral but which were called adaptive by Levy et al. (2015), and vice versa, are highlighted by red boxes, with

explanation in main text. The solid lines on all panels are Y = Xwhile X and Y error bars show the fitness measurement errors (see STARMethods). For each panel,

we report the mean and SD of the difference in fitness for each comparison, grouped by low and high fitness clones. Systematic differences between mea-

surements appear to be lower in low-fitness clones compared to high fitness clones, but the measurements are generally consistent throughout. We conducted

extensive validation of our fitness estimation methodology, highlighted in Figures S1, S2, S3, S4, and S5.
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MATa strain (the mating type of the founding ancestor). Thus, all
of the diploids apparently arose via self-diploidization to
generate MATa/MATa diploids, rather than by mating type
switching and subsequent mating between haploids of opposite
mating types. Such self-diploidization has been observed to be
beneficial in a prior glucose-limited evolution experiment (Ger-
stein et al., 2006).

Of our whole-genome sequenced clones, 240 were diploid, of
which the vast majority—237 (99%)—were measured as adap-
tive,with anaverage fitnessbenefit of 3.6%±0.6%.This included
12 clones used for the pairwise competition assays in Levy et al.
(2015), which had an average fitness benefit of 3.5% in that
assay, validating diploidy as an adaptive mutation. Aside from
three diploid clones carrying an extra copy of chromosome 11
(discussed below), there was no significant difference in the
fitness of adaptive diploid clones that contained no additional
mutations (n = 102), as compared to either diploids with addi-
tionalmutations that donot alter protein sequence (n=53), or dip-
loids containing additional mutations (i.e., missense, nonsense,
and insertion/deletion) that do alter protein sequence (n = 79)
(3.4% versus 3.2% versus 4.2%; p > 0.1; ANOVA). This strongly
suggests that diploidy is the only driving adaptive mutation in
most or all of these clones. Three of the sequenced adaptive
diploid clones contained an extra copy of chromosome11,which
conferred a significant fitness advantage beyond diploidy alone
(s = 7.6% ± 0.6%; p % 0.0001; ANOVA test for each of the four
batches of fitness measurements). One additional diploid clone
contained an extra copy of chromosome 12, but was not signifi-
cantly more fit than the average diploid (s = 4.6%, p > 0.1).

Of the 1,649 lineages that we determined to be diploids, 451
(27%) had been previously determined by the lineage tracking
analysis of Levy et al. (2015)—without any knowledge of
ploidy—to be lineages that were adaptive, with roughly the
same fitness values, across both replicate evolution experi-
ments. This suggests that many of these lineages were already
self-diploidized by the time they were present in the barcoded
population used to found the replicate evolutions; potentially
the self-diploidization occurred during the transformation pro-
cess itself when the barcodes were introduced into the cells.
To investigate this, we measured the frequency of diploids
throughout the Levy et al. (2015) replicate evolutions, and deter-
mined that at time zero the frequency of diploidy was low (!1%;
Figure S7). We also conducted additional 200-generation evolu-
tion experiments using the experimental conditions of Levy et al.
(2015) but using an isogenic non-barcoded haploid ancestral
population (i.e., that had not undergone transformation) and
found that <0.1% of sampled clones were diploid at generation
88, indicating that spontaneous self-diploidization under our
adaptive growth conditions is a rare event. The possibility of
transformation-induced diploidy prevents us from accurately
estimating a mutation rate for self-diploidization, but it is clear
that whole-genome duplication alone is beneficial under our
growth conditions with a fitness effect of !3.4%.

Adaptive Haploid Clones Typically Carry a Single
Adaptive Mutation
Of the 418 clones we sequenced, 178 were haploid, of which 96
were adaptive and 82 neutral. We found a significant excess in

the total number of mutations in adaptive haploid clones
compared to neutral haploid clones (1.95 versus 0.94 mutations
per clone; p = 0.00004; ANOVA; Table 1); note, the observed
number of mutations in neutral clones (0.94 per clone) is higher
than the expected 0.5 events per clone after 88 generations,
based on the mutation rate estimates of Levy et al. (2015). The
source of this excess is unknown, although it is possible that mu-
tations may have been induced by transformation of the DNA
barcodes. It has been speculated that transformation is muta-
genic (Giaever et al., 2002; Shortle et al., 1984) and would be
consistent with the transformation-induced diploidy hypothe-
sized above.
The adaptive clones have, on average, almost exactly one

additional mutation compared to neutral clones, suggesting
that they indeed carry only a single adaptive mutation. The adap-
tive haploid clones also have a significantly larger proportion of
protein sequence altering mutations (i.e., missense, nonsense,
or insertion/deletion mutations) (73%) when compared to the
neutral clones (46%) (Table 1; p = 0.0001, Fisher’s exact test),
strongly suggesting that the additional mutations in the adaptive
clones impact protein function.

Adaptive Haploids Are Enriched for Mutations in the
Nutrient Response Pathways
A hallmark of adaptive mutations in laboratory evolution experi-
ments is the finding of recurrent mutations within genes or
pathways, which is unlikely under neutral evolution. We define
candidate adaptive targets as those loci with at least two inde-
pendent adaptive mutations among our sequenced clones.
None of the protein-alteringmutations found in the neutral clones
occurred in the same gene; by contrast, 77 of the 135 (57%) pro-
tein-altering mutations in the adaptive clones were found in
recurrently mutated genes (p = 10"11, Fisher’s exact test). All
of these 77 mutations were found in clones with different barco-
des and are thus independent. The recurrent mutations in the
adaptive clones occurred in six genes (IRA1, IRA2, GPB1,
GPB2, PDE2, and CYR1), all of which are in the Ras/PKA
pathway and are known to regulate yeast cell growth in response
to glucose availability (reviewed in Conrad et al., 2014). A number
of identical mutations occurred independently more than once:
single mutations in CYR1, GPB1, and GPB2 and two different
mutations in IRA1 each occurred twice independently, while a
single mutation in PDE2 occurred independently four times.
Mutations in this pathway have been identified as adaptive in
previous glucose-limited yeast evolution experiments (e.g.,
Kao and Sherlock, 2008; Wenger et al., 2011; reviewed in Long
et al., 2015), with selective effects of!10%–25% per generation
in chemostats. We also observed one mutation in each of three
different genes belonging to the TOR/Sch9 pathway (TOR1,
KOG1, and SCH9), which also integrates nutrient availability in-
formation with growth. We did not observe recurrent mutations
in any other genes or pathways.
A total of 82 of our 96 (85%) sequenced adaptive haploid

clones contained a mutation in either the Ras/PKA or TOR/
Sch9 pathways (Figure 3; Table 1); 36 of these 82 clones had
no other identifiedmutations, strongly indicating for these clones
(and implying for the other clones) that the mutation in the Ras/
PKA or TOR/Sch9 pathway gene is the causal adaptivemutation.
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We also note that four diploid clones (not included in the 82
described above) also carried mutations in the nutrient response
pathway genes. Of the remaining adaptive haploid clones that
did not have mutations in the Ras/PKA or TOR/Sch9 pathways,
three were clones for which we were unable to identify any mu-
tations, and 11 had mutations that did not appear to affect other
nutrient response pathways (Table 2). We do not find any evi-
dence for adaptive copy-number changes in any of our haploid
clones.
In genes known to be positive regulators of the Ras/PKA and

TOR/Sch9 pathways (RAS2, CYR1, TOR1, KOG1, SCH9, and
TFS1) we identified only missense mutations, and for each of
these genes there were only 1 to 3 clones with such mutations
(Table 1). By contrast, in genes encoding negative regulators of
the Ras/PKA pathway (IRA1, IRA2, GPB1, GPB2, and PDE2)
many of the mutations were likely inactivating (insertion/deletion
and nonsense) and mutations in these genes were observed
much more frequently, with 4 to 32 mutant clones per gene
(Table 1). These results suggest that most adaptive mutations
in the positive regulator genes increase or modify activity (hyper-
morphic) and thus have a small mutational target size, while
those in negative regulator genes of the nutrient response
pathway decrease or abolish activity (hypomorphic). As ex-
pected of clones with hypermorphic mutations in the TOR/
Sch9 pathway, those clones had increased rapamycin resis-
tance (data not shown).

The Fitness Effect of a Mutation Is Dependent on the
Gene and the Mutation Type
We integrated our genotype data with our fitness estimates to
study the distribution of fitness effects for all of our major muta-
tion classes, generating a genotype-to-fitness map for the initial
driver mutations in our evolution experiment (Figure 4). As the
fitness benefits may not necessarily be gained during exponen-
tial growth, we also provide an additional y axis on the plot,
showing the fitness per growth cycle (a factor of eight larger).

Figure 3. Schematic of the Ras/PKA and
TOR/Sch9 Pathways in Yeast and the Num-
ber of Adaptive Mutations Found per Gene
The colored boxes denote the number of inde-

pendent haploid lineages observed in our dataset

with mutations in a particular gene. Blue boxes

indicate mutations in negative regulators of cell-

cycle progression, while green boxes indicate

mutations in positive regulators. Modified from

Figure S1 of Kao and Sherlock (2008).

We found that most diploid clones have
a fitness advantage close to the mean
for diploids without other mutations
(!3.4%) with variations consistent with
counting noise (Figure S3), again sug-
gesting that these clones have function-
ally identical adaptive mutations—that
is, solely diploidy. By contrast, lineages
with mutations in the Ras/PKA and TOR/
Sch9 nutrient response pathways have

fitness benefits ranging from 5% to 15%, depending on the
gene and type of mutation, suggesting a lack of functional
equivalency between different adaptive mutations within these
nutrient response pathway genes. Together, the diploidy
(s !3.4%) and nutrient response pathway mutations (s !5%–
15%) explain the two major fitness classes observed in Levy
et al. (2015) (see Figure 3B of that work) and in our fitness mea-
surement assays (see Figure S6).
We conducted a number of ANOVA tests for the effects of

gene identity, mutation type, and the presence of additional cod-
ing mutations on the fitness of our clones containing nutrient
response pathway mutations. We found significant effects of
both gene identity (p < 10"7; ANOVA), and mutation type
(p < 10"3; ANOVA after controlling for gene effects for three of
four batches) on the fitness of these lineages. These differences
can even be found between paralogs: the 32 mutations in IRA1
confer a significantly greater fitness advantage, on average,
than the 12 mutations in its paralog IRA2 (12.9% versus
10.2%) (p < 0.05; ANOVA), and mutations in GPB2 confer a
significantly greater fitness advantage than mutations in GPB1
(10.4% versus 6.2%) (p < 10"4; ANOVA). In addition, missense
mutations in IRA1 confer a significantly lower fitness benefit
than nonsense or insertion/deletion mutations within the same
gene (p % 0.05, ANOVA for three of four batches).
The fitness distribution for lineages carrying mutations in

GPB2 is remarkably narrow within replicates (SD <1% per gen-
eration across all replicates), particularly when compared to
other nutrient response pathway genes such as IRA1 (SD of
1%–3% per generation). Note, this variation inGPB2 is substan-
tially less than the average variation observed between repli-
cates and batches for high fitness lineages (Figure 2). One
possible explanation is that every mutation in GPB2 completely
abolishes gene function; alternatively, partial loss of GPB2 func-
tion may still lead to the same level of Ras/PKA pathway activa-
tion as a complete loss of function, resulting in these highly
consistent fitness estimates. In either case, the lack of fitness
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variation among the lineages with mutations in GPB2 demon-
strates the precision of our fitness estimates and further sug-
gests that the fitness differences observed between replicates
and batches (Figure 2) may be due to biological variation in
fitness due to slight differences in conditions rather than estima-
tion error.

We also tested for the presence of additional adaptive muta-
tions in the adaptive haploid clones containing nutrient response
pathway mutations. We found that the 32 clones with both a
nutrient response pathway mutation and an additional protein
sequence altering mutation do not have a significantly different
fitness than the 50 clones with a nutrient response pathway mu-
tation alone (p < 0.05 for only one of the four batches; ANOVA
controlling for gene and mutation type).

Not Every Gene in the Ras/PKA Pathway Is a Target of
Adaptation
Among our sequenced adaptive clones, we found putative hypo-
morphic mutations in most of the negative regulators of the Ras/
PKA pathway (IRA1, IRA2, GPB1, GPB2, and PDE2) but no mu-
tations in PDE1. We hypothesized that PDE1 mutations did not
confer a substantial fitness advantage, as Pde1 has a lower affin-
ity for cAMP than Pde2 (Londesborough and Lukkari, 1980). To
test this hypothesis, and to confirm that loss of any of the five
negative regulators of the Ras/PKA pathway we observe as
mutated is indeed adaptive, we constructed whole-gene dele-
tions of IRA1, IRA2, GPB1, GPB2, PDE1, and PDE2, as well as

the pseudogene YFR059C as a control, and assayed their fitness
using fluorescence-based pairwise competition assays (see
STAR Methods). As predicted, we found that the fitness of the
PDE1 deletion mutant was indistinguishable from neutrality,
while deletion of the other genes was highly beneficial (Figure 5)
with the fitness benefit roughly similar to that of the detectedmu-
tations in these genes.

DISCUSSION

One of the key goals of the study of adaptive evolution is to char-
acterize the molecular basis and fitness effects of a comprehen-
sive set of adaptation-driving mutations. We have overcome
several challenges to achieve this goal: sampling a large number
of independent clones without any bias for the type of adaptive
event (e.g., point mutation versus structural variant versus epige-
netic change), identifying adaptive events across the whole
genome, and estimating the fitness effects of each of these mu-
tations in a high-throughput manner, with high confidence and at
a low cost per assay (!$0.07 per clone per replicate measure-
ment). In addition, as exemplified by the small variation in the
many independent fitness measurements for GPB2 mutants,
our fitness measurements are both sensitive and precise.
By sampling adaptive mutations while they are still collectively

a modest fraction of the population, we were able to identify the
two major (and perhaps only) classes of adaptive mutations that
drive early evolution in our experiment: (1) self-diploidization

Table 2. Mutations in Adaptive Haploid Clones without a Nutrient Response Pathway Mutation

Lineage ID Fitness (%) Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

7538 8.2 ERG1; missense;

H220Y

THI3; nonsense;

S18*

7953 10.0

13183 13.9

14688 2.3 STE3; missense;

I141T

RXT2; missense;

N63Y

18152 13.9 KTI12; missense;

K208Q

21863 3.2

26598 4.0 YLR157W-E; TE

insertion

53054 1.6 ATG17; upstream

SNV; 2655 bp A/G

60700 8.5 SSK2; nonsense;

E702*

88494 6.4 NCL1; upstream

SNV; 374 bp T/A

225103 2.1 YKL068W-A upstream

TE insertion

IES3; missense;

N241T

LAA1; synonymous;

T623T

SEC4; synonymous;

N65N

254044 2.2 TCB2; upstream

SNV; 99 bp C/A

BAT1; upstream

SNV; 498 bp A/T

LEU4; missense;

I264V

DMA1; frameshift;

989 bp

SUP51, CYR1

upstream

TE insertion

262917 2.6 FPK1; frameshift;

2113bp

POP4; upstream

SNV; 246 bp C/G

304483 3.1 YOL014W; missense;

L65M

BEM2; missense;

D2054Y

PAU16; upstream

SNV; 835 bp AT/TG
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(s !3.4%), and (2) mutations presumably activating the Ras/
PKA or TOR/Sch9 pathways (s !5%–15%). These two classes
of mutations explain the fitness advantages of 319/333 (96%)
of our sequenced adaptive clones, suggesting that in our system
early stage adaptation is driven by only a small number of muta-
tional classes.We can also be certain that we did notmiss a large
class of difficult to identify adaptive events, such as mutations in
repetitive regions, complex structural changes, or epigenetic
modifications.
We found a large number of recurring large-effect adaptive

mutations in a small number of genes. In one case only a single
member of a paralog pair, PDE2 and not PDE1, had any
observed mutations. We confirmed that the reason we did not
observe mutations in PDE1 was not due to insufficient sampling
depth, but rather was due to PDE1mutations not being adaptive
under our experimental conditions. The results make us confi-
dent that we have generated a comprehensive map of the pre-
dominant adaptation-driving mutations in S. cerevisiae grown
in one specific environment.
Note, we have not attempted to identify every potentially

adaptive mutation in our experimental condition, rather we
have identified most of the mutations that drive or are likely to
drive the evolutionary dynamics of our system. In this system,
with its well-mixed population, any adaptive mutation that is
either too selectively weak or has a very low rate of occurrence
cannot effectively drive the adaptive dynamics, because of
clonal interference (Levy et al., 2015). For example, if the target
sizes for adaptive mutations in two genes are k1 and k2 respec-
tively, with selective advantages s1 and s2, then after a time T in a
large population the ratio of the fractions of the population of the
two classes of mutants are k1exp(s1 T) and k2 exp(s2 T). If T = 88
generations, as for our sampled clones, with s1 " s2 = 5%, and
the same target sizes (k1 = k2), themutant with 5%greater fitness
benefit will be observed 100 times as often. However, the muta-

tional target size is also important: if k2 were 1003 larger than k1
(e.g., k2 includes many possible beneficial loss of function muta-
tions while k1 includes only very few beneficial gain of function
mutations), this compensates for the selective effect and muta-
tions in the two genes will become comparable fractions of the
population. Therefore, both selective advantage and the muta-
tional target size are important in determining which mutations
drive adaptive evolution.
The importance of both parameters may explain why we

observed few candidate adaptive mutations in regulatory re-
gions of Ras/PKA or TOR/Sch9 pathway genes. Indeed, we
observed only one possible case, a transposon insertion up-
streamof theCYR1 gene, in a clone for which therewere no other
obvious adaptive mutations. Such mutations may therefore be
rarer and/or confer a smaller selective advantage than changes
to the actual protein sequences in our system and experimental
condition.
The first key mutational event that we identified here was self-

diploidization. The presence of a diploid fitness advantage in our
growth condition is consistent with previous work showing that
self-diploidization frequently fixes in yeast populations evolving
under glucose limitation (Gerstein et al., 2006), but contrasts
with the fitness disadvantage of diploids relative to haploids
found under glucose limitation (Adams and Hansche, 1974;
Zeyl et al., 2003) and no difference in fitness under nitrogen lim-
itation (Hong and Gresham, 2014). Note, however, that these
studies were performed in environmental conditions different
from ours (chemostats versus batch culture), which could signif-
icantly modify the relative fitness of haploids and diploids. This is
consistent with a prior study that has found that the relative
growth rates of haploid and diploid cells is highly dependent
on both the specific strain genotype and the environment (Zörgö
et al., 2013). A large body of work (reviewed in Otto, 2007) has
sought an explanation for the evolution of diploidy in eukaryotes

Figure 4. The Fitness Spectrum (Genotype-
to-Fitness Map) of Evolved Clones with
Different Adaptive Mutations
The inverse variance weighted fitness averaged

across all batches and replicates is plotted. Mu-

tations are colored by their molecular basis (i.e.,

chromosomal amplification, missense, nonsense,

or insertion/deletion). The ‘‘other’’ class includes

the 14 adaptive haploid clones for which we did

not identify a nutrient response pathway mutation.

Within-batch SDs (not shown for clarity) are %1%

for >90% of clones with nutrient response

pathway mutations, while between-batch SDs are

!2% for all clones. To highlight the effect of single

mutations on fitness, the six diploid clones with

nutrient response pathway mutations are not

shown. We show per-cycle fitness (eight genera-

tions per cycle) as a secondary y axis (right side),

as the fitness benefit of these mutations may not

exclusively be due to changes in per-generation

fermentative growth rate, but due to changes in

other parts of the growth cycle such as growth lag,

diauxic shift, aerobic growth, or increased viability

after stationary phase. Figure S6 shows the dis-

tribution of fitness effects of our 4,800 sampled

and 418 sequenced clones.
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and the frequent polyploidization events in the evolutionary his-
tory of many organisms, including S. cerevisiae (Marcet-Houben
and Gabaldón, 2015). Our work and that of Zörgö et al. (2013)
suggest that diploidy may arise under some conditions due to
a direct fitness advantage for diploids when compared to
isogenic haploids. Further work is needed to determine the phys-
iological basis for this fitness advantage and the generality of this
advantage in other conditions.

The secondmajor type of adaptive event targeted genes in the
Ras/PKA and TOR/Sch9 nutrient response pathways. Previous
work has shown that mutations in these pathways exhibit strong
pleiotropic effects. For example, natural genetic variation present
in many genes in the Ras/PKA pathway responds to selection for
growth at 40!C (Parts et al., 2011). In addition, loss of function
mutations in the TOR/Sch9 pathway result in an increased repli-
cative lifespan (number of viable cell divisions per cell) (Kaeber-
lein et al., 2005), as do mutants that decrease activity of the
Ras/PKA pathway (Fabrizio et al., 2004; Lin et al., 2000). The
study of the pleiotropic nature of fitness trade-offs (antagonistic
pleiotropy), is critical to understanding adaptive evolution in the
laboratory and in nature. Our DNA barcode-based approach
allows for the isolation and economic measurement of the indi-
vidual fitness values of large pools of mutants, which will be of
great use in investigating such evolutionary trade-offs.

In summary, we have conducted an in-depth survey of themo-
lecular nature and associated fitness effects of the adaptive mu-
tations in an evolving system, generating a genotype-to-fitness
map for the mutations that drive the initial adaptive evolution.
This approach opens the possibility of a farmore in-depth under-
standing of adaptive evolution by de novo mutations and gives

us a new way to assay the fitness landscapes in evolving sys-
tems comprehensively, economically, and precisely.
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G., Blomberg, A., Omholt, S.W., andWarringer, J. (2013). Ancient evolutionary

trade-offs between yeast ploidy states. PLoS Genet. 9, e1003388.

12 Cell 167, 1–12, September 22, 2016

Please cite this article in press as: Venkataram et al., Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mu-
tations in Yeast, Cell (2016), http://dx.doi.org/10.1016/j.cell.2016.08.002



STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

ExoSap-It Affymetrix Cat#78201

OneTaq 2X Master Mix with Standard Buffer New England Biolabs Cat#M0482L

10XCutSmart buffer New England Biolabs Cat#B7204S

ApaLI restriction enzyme New England Biolabs Cat#R0507S

Critical Commercial Assays

Zymo YeaStar Genomic DNA kit Zymo Research Cat#D2002

BioBasic 96 yeast genomic DNA extraction kit BioBasic Cat#BS8357

Nextera TD buffer and TDE1 enzyme Illumina Cat#FC-121-1030

KAPA HiFi Library Amplification Kit KAPA Biosystems Cat#KK2612

Nextera Index kit Illumina Cat#FC-121-1012

Agencourt AMPure XP magnetic beads Beckman Coulter Cat#A63880

QIAquick PCR purification kit QIAGEN Cat#28106

Qubit HS DNA quantitation kits ThermoFisher Cat#Q-33120

Deposited Data

All Illumina sequencing data for both the whole-

genome sequencing and the fitness measurement

assays

This paper NIH BioProject: PRJNA310010

S. cerevisiae (strain S288C) reference genome, version

R64-1-1

Saccharomyces Genome

Database (SGD)

www.yeastgenome.org

S. cerevisiae reference genome that includes the DNA

barcode locus: sacCer3 S288C

Levy et al., 2015 NIH BioProject: PRJNA310010

Experimental Models: Organisms/Strains

S. cerevisiae YFP-tagged ancestor strain Levy et al., 2015 GSY5306

S. cerevisiae neutral strain with ApaLI restriction site in

barcode, used for pooled fitness assay

This paper GSY5929

Sequence-Based Reagents

Forward Primer to amplify barcode region for Sanger

sequencing (PS1): CCCGCAGAGTACTGCAATTT

This paper N/A

Reverse Primer to amplify barcode region for Sanger

sequencing (PS2): TGCACGAAAAGCAAACAAAC

This paper N/A

Primers to knock out Ras/PKA negative regulator

genes: see STAR Methods

This paper N/A

Primers for PCR amplification of the barcode locus:

see STAR Methods

This paper N/A

Software and Algorithms

TrimGalore, version 0.3.7 Felix Krueger, Babraham

Bioinformatics

http://www.bioinformatics.babraham.ac.

uk/projects/trim_galore/

Novoalign, version 3.02.02 Novocraft Technologies http://www.novocraft.com/products/novoalign/

PicardTools version 1.105(1632) Broad Institute http://broadinstitute.github.io/picard

GATK version 3.2.2 McKenna et al. (2010) N/A

Bedtools v2.17.0 Quinlan and Hall (2010) N/A

Tandem Repeat Finder Benson (1999) N/A

CLC Genomics Workbench version 8.5 QIAGEN www.clcbio.com

Pipeline to determine the number of barcode reads This paper https://github.com/sunthedeep/BarcodeCounter

(Continued on next page)

Cell 167, 1–12.e1–e15, September 22, 2016 e1

Please cite this article in press as: Venkataram et al., Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mu-
tations in Yeast, Cell (2016), http://dx.doi.org/10.1016/j.cell.2016.08.002



CONTACT FOR REAGENT AND RESOURCE SHARING

Further information regarding themanuscript may be directed to the lead contact Dmitri Petrov (dpetrov@stanford.edu). Requests for
reagents may be directed to, and will be fulfilled by Gavin Sherlock (gsherloc@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The yeast strains used in this study can be grown and maintained using standard methods (e.g., YPD media in test tubes, glycerol
stocks for long term storage at !80"C), but should be propagated in the selection environment (glucose limited minimal media) for
optimal phenotypic and fitness measurements.

METHOD DETAILS

Sampling Clones
Evolved yeast clones were isolated by plating for single colonies from frozen samples of the generation-88 time point of a previously
reported serial batch transfer evolution experiment seeded by a population of individually genome-barcoded yeast cells (500,000
barcodes total); each batch cycle consisted of 8 generations of growth with glucose as the known limiting nutrient at an initial con-
centration of 1.5% (Levy et al., 2015).We selected 3,840 colonies from replicate experiment E1 and 960 colonies from replicate E2 for
a total of 4,800 individual evolved clones. A portion of each colony was resuspended in 20% glycerol in 96 well plates and immedi-
ately frozen at -80"C; the remaining portion was used to identify the barcode residing in that clones genome. To identify the barcode,
we amplified the genomic region carrying the barcode with PCR using the following primers:

PS1 - CCCGCAGAGTACTGCAATTT
PS2 - TGCACGAAAAGCAAACAAAC

The PCR products were purified using ExoSap-It (Affymetrix # 78200) and sequenced by Sanger technology, using PS2 as the
sequencing primer, and then identified from among the set of 500,000 barcodes described in Levy et al. (2015).

Pairwise Fluorescence Competition Assay Measurements
Fluorescence-based fitness assays were conducted as in Levy et al. (2015). Briefly, the individual clone to be assayed was grown in
liquid culture and then mixed with a YFP-tagged ancestral clone in a 1:9 ratio. This mixture was sampled over 32 generations (four
8-generation batch cycles) in conditions identical to the initial evolution experiments of Levy et al. (2015). The relative frequencies of
the sample and the ancestor were estimated at each time-point using flow cytometry at the Stanford Shared FACS facility. An expo-
nential model was then fit to these data to estimate fitness.

Pooled-Clone Fitness Measurement Assay
Overview
All 4,800 isolated clones were pooled into a single culture, then mixed with a clone with ancestral fitness in a 1:9 ratio and competed
by culturing the mixture under conditions identical to the initial evolution for 32 generations (four 8-generation cycles), with samples
being stored at every transfer. Barcode frequencies were tracked using Illumina HiSeq technology, and fitness was estimated using
these frequency trajectories. We performed the fitness measurement assay a total of 11 times, in four independent batches, each
time with two or three replicate flasks (see below for complete details).
Design of the Fitness Measurement Assay
The goal of the fitness measurement assay is to cheaply, easily, and accurately measure the fitness of many barcoded clones in par-
allel; any desired set of clones (as long as each clone contains a unique barcode at the same genomic position) can be pooled and
used in this assay. In this protocol, we competed a pool of 4,800 clones sampled from generation 88 of the evolution experiments of
Levy et al. (2015) against a clone with ancestral fitness, for a period of 32 generations of batch culture competition.We then estimated

Continued
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the frequencies of the clones at five time points by Illumina amplicon sequencing of their DNA barcodes. The frequencies from four of
these five time points (described in section 3.4) were then used to estimate fitness (s). We used the same growth conditions as the
evolution experiments of Levy et al. (2015), where the population goes through a bottleneck of z5,107 cells every 48 hr, i.e., at the
time it is transferred to fresh media (z 8 generations between transfers).
To accurately measure the fitness of many clones, each adaptive lineagemust be at a large enough frequency such that stochastic

effects at the bottleneck process are mitigated. In addition, most of the initial population must consist of the ancestral genotype, so
that fitness is measured in a condition dominated by the ancestor. To fulfill all of these criteria we first pooled 4,800 sampled clones,
then seeded this pool at an initial frequency of 10% in the population and competed against an ancestral strain that made upz90%
of the initial population. Each sampled clone thus had a population size in the bottleneck of z0:1,5,107=5000= 1;000 cells. How-
ever, there are biological fluctuations from stochasticity in the lag time before new growth after dilution, in birth/death fluctuations
near the bottleneck, and in the sampling induced by the dilution process itself. These give rise to fluctuations in the bottleneck pop-
ulation from one cycle to the next of ±

ffiffiffiffiffiffi
bn

p
. In our experiments, we estimated bz10 (see: Quantification and Statistical Analysis) so

that these effects are relatively small. Furthermore, for beneficial mutations with s>1%, the systematic increases in population due to
selection are larger than the stochastic fluctuations. Thus the stochastic effects are relatively small for most adaptive lineages in our
fitness assay.
The large population size and the short time for the assay (32 total generations) also ensured that any new adaptive mutations that

arose during the course of the assay had no significant impact on the fitness estimates of any single clone. The fraction of lineages
that will get taken over by newmutations with a particular range of s can be approximately bounded by m=s,esT , for a representative s.
In our fitness assays, the total adaptive mutation rate per generation m for mutations with s > 5% is z106 (Levy et al., 2015), highly
adaptive mutations have s ! 10%, and the assay is conducted for T = 32 generations. This gives us an upper bound of 104 for the
expected fraction of lineages dominated by a mutant that came up during the evolution. The effect of new adaptive mutations is thus
negligible in our fitness assays.
Ideally, the fraction of the population that consists of mutant clones would remain a small fraction of the total population throughout

the 32 generations of growth in these assays. The dynamics of the limiting resource depend on the physiology of the dominant type(s)
in the population, and if a non-ancestral type dominated it could change those dynamics in a way which affected different mutants
differently. Additionally, if the ancestral clone gets to a low frequency, it becomes challenging to estimate fitness of a mutant relative
to the ancestral type. As we describe in Figure S1, the mutant clones started at a higher frequency within the barcoded class than
planned and reached substantial frequency in the total pool at late time points. This might be one of the sources of systematic var-
iations of measured fitnesses between experiments that we observe. Future experiments would be well served to minimize the effect
of large populations of mutants changing the environment.

Construction of a Strain with Ancestral Fitness
We realized that if a barcoded ancestor was used in the competition experiments, a large number of reads (up to 90%of reads for the
initial time point) would be spent sequencing the ancestral clone, leading to a waste of sequencing capacity when estimating the
frequency of the 4,800 evolved clones in the pool. We attempted to use a barcode-less clone for the ancestor, but found that
the PCR reactions failed when the barcode sequence was present in such a small proportion of the population. Therefore, we devel-
oped a barcoded ancestral strain with a restriction site at the barcode locus to serve as the reference strain, allowing us to remove the
amplicons derived from the reference strain by restriction enzyme digestion after the PCR step, saving us a significant amount of
sequencing cost.
We used the following primers in constructing the modified ancestor:

We used the plasmid pBAR3 (Levy et al., 2015) as a template to generate two separate PCR products from the above primers,
which were then digested and ligated together to form the final construct for transformation. Primers RE-SbfI-F and RE-ApaLI-2R
were used to generate amplicon A, while primers RE-ApaLI-2F and RE-XhoI-R generated amplicon B. Amplicon A was then digested
with SbfI and ApaLI, amplicon B was digested with ApaLI and XhoI and the pBAR3 plasmid was digested with SbfI and XhoI. These
three digestion products were mixed and ligated simultaneously to generate complete plasmids containing the ApaLI site in the
barcode region. The ligation product was transformed directly into SHA185 (Levy et al., 2015) to generate the modified ancestral
clone. The presence of the ApaLI site in the barcode locus was verified through amplification of the barcode locus of these trans-
formants, digestion of the resulting product by ApaLI and gel electrophoresis. A number of validated modified ancestral clones
were screened for ancestral fitness using the fluorescent pairwise-competition fitness assays (described in Levy et al. (2015)),
and the clone with the fitness closest to ancestral was selected for use in the sequencing based fitness measurement assays.

RE-SbfI-F atcg cctgcagg aaacgaagataaatcatgtc

RE-ApaLI-2R atcg gtgcac ctgtcaacactgttccaact

RE-ApaLI-2F atcg gtgcac ataacttcgtataatgtatg

RE-XhoI-R atcg ctcgag tcatgtaattagttatgtca
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Optimizing Sequencing Costs
Wedetermined that we neededz 1million reads per time point for Illumina amplicon sequencing of the 4,800-pool barcodes in order
to accurately estimate the frequency of the clones. For the initial time point, we expectz200 reads per clone at this read depth. The
frequencies of clones with large fitness effects (either positive or negative) are expected to change the most between samples (taken
every 8 generations). Az20% fitness effect (the largest fitness effect observed in Levy et al. (2015)) would result in a 4-fold change in
frequency over 8 generations, resulting in the subsequent sample havingz800 reads for the clone if it is adaptive andz50 reads for
the clone if it is deleterious. These read depths are sufficient to have a small amount of sampling noise during the amplicon
sequencing process (Levy et al. (2015) Supplementary Methods section 5), and thus z 1 million reads per sample are adequate
for our purposes. After allowing for variation in read depth when multiplexing samples (one sample per time point), the presence
of a small amount of reads from the ancestral reference strain (due to low levels of undigested PCR products) and the use of a
25% Phi-X library spike-in to properly calibrate the Illumina machines, we ended up pooling 9 assays worth of samples (z40 sam-
ples) per lane of Illumina HiSeq 2000. As each lane results inz200 million reads, this gave usz4 million raw reads per sample. After
removing reads from the reference strain and PCR duplicates, we had 1-3 million reads per sample for our estimation.

As we sequenced 5 time points per fitness assay replicate, this protocol costsz$0:06 USD tomeasure the fitness of a single clone
per replicate. It takes a single person about one month to conduct both the fitness measurement assays and library preparation for
amplicon sequencing, showing that this is truly a fast, accurate, and cost-effective way to estimate the fitness of thousands of clones
in parallel.

Pooling the 4,800 Clones Sampled at Generation 88
The 4,800 sampled clones from generation 88 of the two evolution replicates of Levy et al. (2015) were stored in glycerol stocks in 50
96-well plates. As it was impractical to pool all of these clones together at once, we constructed the pool in batches of 192 clones
(2 plates). Each clone was grown from freezer stock in 800 ml of M3medium (themedium used in the evolution experiments) in 96 well
plate format at 30!C for 2 days so that all lineages reached saturation. 400 ml 40% glycerol were added to each well and mixed, after
which 400mL mixture from each well were pooled into a single vessel. Thus, for every two plates (192 total clones) we had an 80mL
pool stored in two 50mL tubes at"80!C. This procedure was repeated for pairs of plates over the course of a few weeks until we had
25 frozen pools, each of which represented two plates worth of clones. As we used amulti-pronged pinner to take clones from frozen
stock and pin them into 96-well plates, a small percent of clones were not successfully recovered from frozen stock and therefore not
included in the pool. The 25 frozen pools were then thawed simultaneously at room temperature and mixed into a single vessel. This
vessel thus contained cells from z4; 800 clones (excluding those that were not recovered from frozen stock). We dispensed 1 ml
aliquots into 1.5mL eppendorf tubes, which were stored at "80!C.

We found that the clones have a wide range of frequencies in the pool, spanning nearly 3 orders of magnitude. To test whether this
wide frequency range had a significant effect on fitness, we generated another pool of 500 of these clones where all clones were
grown and pooled simultaneously, instead of in batches, and the fitness assaywas begunwithout any freeze-thaw cycles tominimize
the number of generations of pooled growth before the beginning of the fitness assay. Our fitness measurement results are highly
consistent with the results of the 4,800 clone pool (Figure 2), suggesting that the wide range of initial frequencies, freeze-thaw effects
nor the presence of additional generations of growth in the pool substantially change our fitness estimates.

Conducting the Fitness Measurement Assay
The fitness measurement assay was designed to assay the fitness of a large number of adapted clones in bulk against a reference
clone. We conducted the fitness measurement assay on the pool of 4,800 clones in four batches with slightly different protocols.

To conduct the fitness assays, we first streaked themodified ancestral clone from frozen stock ontoM3 agar plates. We selected a
single colony and inoculated it into 3mL fresh M3media and grew it for 2 days so that it reached saturation. 400 ml of cell culture were
then inoculated into 100mLM3medium (the medium used in the evolution experiments of Levy et al. (2015)) in 500mL DeLong flasks
(Bellco # 2510-00500). We also thawed out 1mL of the 4,800 clone pool, spun it down, removed supernatant, re-suspended the cells
in M3 medium (to remove glycerol) and then inoculated the entire volume into a separate flask of 100mLM3 medium. After 2 days of
growth at 30!Cand 223RPM in a shaking incubator, the cultures were saturated, andwemixed the ancestral culture with the pool in a
1:9 ratio accounting for variation in particle counts between the two cultures (Beckman Coulter) resulting in z100mL of mixture.
400 ml of this mixture were then used to inoculate 3 replicate fitness assay cultures. The replicate fitness assay cultures were grown
under conditions identical to the initial evolution conditions (Levy et al., 2015) for a total of 4 growth cycles or 32 generations with
1:250 dilutions at every transfer. The remainder of the 100mL culture after the initial mixture and after each transfer was aliquoted
in two 50mL conical tubes, spun down at 3000 rpm for 5 min, re-suspended in 6mL sorbitol solution (0.9M sorbitol, 0.1M Tris-
HCL [pH 7.5], 0.1M EDTA [pH 8.0]) and frozen at "20!C ("80!C is also acceptable). This procedure was done for three different
batches of assays (batches # 1, # 3 and # 4). The 500 clone pool measurements followed a similar protocol except we did not conduct
the recovery growth from the freezer stock, as the 500 clone pool fitness assays were conducted without freezing the population (so
one two-day growth cycle between the initial pooling and the mixing of the pool with the ancestor to begin the fitness assay).

For the batch # 2 containing two replicates (the third replicate did not generate sufficient sequencing data for analysis), after the
initial 2 day growth of the separate ancestral and pool cultures in 100mLM3media performed as for the first batch of experiments, we
transferred 5,107 cells from each culture into 100mL of fresh M3 medium and grew them separately for 2 days before mixing and

e4 Cell 167, 1–12.e1–e15, September 22, 2016

Please cite this article in press as: Venkataram et al., Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mu-
tations in Yeast, Cell (2016), http://dx.doi.org/10.1016/j.cell.2016.08.002



beginning the assay as before. This second 48 hr growth was done to accustom the cells to the medium and to minimize the freezer
effects before beginning the assay. The number of cells/mLwas determined using a Coulter particle counter to transfer 5,107 cells for
each transfer, rather than the 400 ml transfers done by Levy et al. (2015). This was done to ensure a more consistent dilution regime,
and in practice worked out to nearly the same regime as the evolution experiments as we transferredz400mL per cycle under these
conditions.
In effect, while all three batches were tracked for 32 generations of growth, we used the data from generations 8-32 for fitness

estimation in batches 1 and 3, and data from generations 0-24 in batch 2.

DNA Extractions from Each Sample
For each sample (representing one time-point in one replicate), we conducted DNA extractions as follows (starting from 50mL of cells
spun down, then re-suspended and frozen in 5mL of sorbitol solution: 0.9M sorbitol, 0.1M Tris-HCL [pH 7.5], 0.1MEDTA [pH 8.0]).We
thaw the frozen samples at room temperature, resuspend the cells by vortex and transfer 750mL of cells to a 2mL screw cap tube. The
cells are then collected by high speed centrifugation, the supernatant is removed and the cells are washed in 500 ml sterile H2 O. The
water is again removed by centrifugation. We then add 200 ml Triton SDS buffer (2% (v/v) Triton X-100, 1% (w/v) SDS, 100mM NaCl
and 1mMNa2 EDTA) to the cells, alongwith 200 ml 25:24:1 phenol: chloroform: isoamyl alcohol andz200mL 0.1mmglass beads. This
mixture is vortexed at high speed for 15min. We then add 200 ml (pH8.0) TE buffer to the tubes in a fume hood, then spin the tubes for
2min in amicrocentrifuge at high speed to collect the cellular debris. The aqueous layer is transferred to a 2mL yellow phase lock tube
(5 PRIME # 2302830), which is then spun for 5 min at high speed in a microcentrifuge. The supernatant from the phase lock tube is
transferred to a clean 2mL eppindorf tube, along with 1mL cold 100% ethanol. This is mixed by inversion, which should visibly pre-
cipitate the DNA. The DNA is collected by centrifugation for 2 min at high speed, after which the supernatant is discarded. The DNA
pellet is resuspended in 400 ml TE buffer, to which we add 50 ml 10mg/mL RNase A and incubate for 15 min at 37!C.We add 10 ml 4M
ammonium acetate plus 1mL 100% ethanol to the mixture and mix by inversion. The DNA is collected again by centrifugation for
2 min at high speed, after which we remove the supernatant and let it air dry for 2 min before finally re-suspending the pellet in
150 ml EB buffer (10mM Tris-Cl [pH 8.5]). We dilute this re-suspended DNA to 75ng/mL in EB for use in the PCR reactions (lower yields
are acceptable as long as the concentration is at least z40ng=mL).

PCR Amplification of the Barcode Locus
We used a two-step PCR protocol to amplify the barcodes from the DNA that is very similar to the protocol used in Levy et al. (2015).
We use barcoded primers for the first PCR cycle. Different combinations of forward and reverse primers are used for each sample

so that we can multiplex many samples together in a single HiSeq lane. The ‘‘N’’ positions in these primers are random nucleotides
used to uniquely index each amplicon product to remove PCR duplicates from downstream analysis. All of these primers are HPLC
purified to ensure that they are the correct length.
Forward primers

Reverse primers

FP1 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN CGATGTTT AATATGGACTAAAGGAGGCTTTT

FP2 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN ACAGTGTT AATATGGACTAAAGGAGGCTTTT

FP3 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN TGACCATT AATATGGACTAAAGGAGGCTTTT

FP4 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN GCCAATTT AATATGGACTAAAGGAGGCTTTT

FP5 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN ATCACGTT AATATGGACTAAAGGAGGCTTTT

FP6 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN CAGATCTT AATATGGACTAAAGGAGGCTTTT

FP7 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN GGCTACTT AATATGGACTAAAGGAGGCTTTT

FP8 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN TAGCTTTT AATATGGACTAAAGGAGGCTTTT

RP1 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN TATATACGC TCGAATTCAAGCTTAGATCTGATA

RP2 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN CGCTCTATC TCGAATTCAAGCTTAGATCTGATA

RP3 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN GAGACGTCT TCGAATTCAAGCTTAGATCTGATA

RP4 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN ATACTGCGT TCGAATTCAAGCTTAGATCTGATA

RP5 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN ACTAGCAGA TCGAATTCAAGCTTAGATCTGATA

RP6 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN TGAGCTAGC TCGAATTCAAGCTTAGATCTGATA

RP7 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN CTGCTACTC TCGAATTCAAGCTTAGATCTGATA

RP8 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN GCGTACGCA TCGAATTCAAGCTTAGATCTGATA

Cell 167, 1–12.e1–e15, September 22, 2016 e5

Please cite this article in press as: Venkataram et al., Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mu-
tations in Yeast, Cell (2016), http://dx.doi.org/10.1016/j.cell.2016.08.002



For the first cycle, for each sample, we performed 12 PCR reactions.
Master Mix:

d 325 ml OneTaq 2x master mix (NEB # M0482L)
d 13 ml 10uM FP
d 13 ml 10uM RP
d 156 ml sample DNA (diluted to 75ng/mL or the entire DNA sample if between 40 - 75ng/mL DNA)
d 143 ml dH2O
d 650 ml total

50 ml of master mix is aliquoted into 12 wells of a 96 well plate and the following PCR reaction is run on a thermocycler:

1. 94!C 10 min
2. 94!C 3 min
3. 55!C 1 min
4. 68!C 1 min
5. Repeat steps 2-4 for a total of 3 cycles
6. 68!C 1 min
7. Hold at 4!C

We then add 250 ml of P1 buffer fromQIAquick PCR purification kits (QIAGEN # 28106) to each PCR reaction and then perform PCR
cleanups following the standard QIAGEN protocol in two columns (6 PCR reactions pooled into each column). This results in 50 ml
eluate of purified PCR product in two tubes for each sample.

For the second step of PCR, we use the following HPLC purified primers (where x is a phosphothioate group)

PE2 - xAATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCxT (read1)
PE1 - xCAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCxT (read2)

Master mix:

d 175 ml PrimestarMAX 2x master mix (Clontech # R045B)
d 7 ml 10 mM PE1
d 7 ml 10 mM PE2
d 90 ml purified PCR product
d 71 ml dH2O
d 350 ml total

50 ml of this master mix is added to each of 6 wells in a 96 well PCR plate, and the following reaction is run:

1. 98!C 2 min
2. 98!C 10 s
3. 69!C 15 s
4. 72!C 15 s
5. Repeat steps 2-4 for a total of 24 cycles
6. 72!C 1 min
7. Hold at 4!C

250 ml of Buffer P1 from the Quiagen kit is again added to each of these PCR wells, and all 6 wells are used in a single PCR pu-
rification protocol to generate a single tube with 50 ml elutent with purified PCR product from the sample.

Removal of the Reference Strain Amplicons Using Restriction Digestion and Size Selection
We conducted the ApaLI digest of the reference strain reads as follows. We added 60 ml H2O, 10 ml 10XCutSmart buffer
(NEB # B7204S), 5 ml ApaLI enzyme (NEB # R0507S) and 25 ml of the purified PCR product to a single tube and digested
for 2 hr at 37!C. After digestion, we did a standard PCR purification using the QIAGEN QIAquick PCR purification kit
(QIAGEN # 28106) on the 100 ml of digestion mixture and eluted in 30 ml of buffer EB. After digestion, we conducted size selection
using E-Gels (ThermoFisher # G661002) with 25 ml of the purified digestion product and selected the band at z350 bp for
sequencing.
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Multiplexing and Amplicon Sequencing
We used Qubit HS kits (ThermoFisher # Q-33120) to quantify the concentration of our size-selected product for each sample and
mixed them in equimolar ratios into a single sample for high-throughput Illumina sequencing. Our samples were submitted to the
Stanford PAN facility (http://pan.stanford.edu) for Bioanalyzer analysis and then sequenced either with NGX Bio www.ngxbio.com
or at the Stanford Center for Genomics and Personalized Medicine (http://scgpm.stanford.edu) with 2x101 paired end sequencing
technology on Illumina HiSeq 2000 machines. Samples were sequenced with 25% phi-X genomic library spike-in (provided by the
sequencing facility) to avoid calibration problems due to amplicon sequencing.

Initial Processing of the Amplicon Sequencing Data
Our initial processing of the sequencing data included de-multiplexing the sequencing data to separate reads from different samples,
removing PCR duplicates, and determining the number of reads in each sample for each barcode. Complete source code can be
found at https://github.com/sunthedeep/BarcodeCounter.
Briefly, the pipeline uses bowtie2 to identify the sample, pcr duplicate, and lineage tag barcode sequences from each read in the

FASTQ file. After removing PCR duplicates from the data and demultiplexing the data by sample, we identify all unique sequences in
each sample and their number of occurrences using a simple lookup table. We then map all of these unique sequences to the data-
base of 500,000 barcode sequences identified by Levy et al. (2015) using NCBI blastn with parameters (‘‘-outfmt 6 -word_size
12 -evalue 0.0001’’) to count the number of reads mapping to each of the known 500,000 barcodes in each sample. We account
for barcodes known to be in the database with nearly identical sequences by considering such barcode clusters as a single lineage,
and provide scripts to identify previously undetected barcode clusters from the sample data. These barcode counts provide the input
for our fitness estimation procedure described below.

Whole-Genome Sequencing
DNA Extraction, Library Construction, and Whole-Genome Sequencing
Clones selected for sequencing were streaked onto either M3 or YPD agar plates from freezer stocks for single colonies. One single
colony for each clone was inoculated into either 1mL M3 or YPD (in a 96 deep-well plate) and grown overnight at 30!C without
shaking. These cultures were used to perform DNA extractions using either the BioBasic 96 yeast genomic DNA extraction kit
(BioBasic # BS8357) or the Zymo YeaStar Genomic DNA kit (Zymo # D2002). Libraries were constructed using Nextera technology
with the protocol of Kryazhimskiy et al. (2014). We multiplexed up to 96 libraries per Illumina HiSeq 2000 lane; samples were
sequenced at the Stanford Center for Genomics and Personalized Medicine with 2x101 paired end sequencing technology. Libraries
that generated less than 5x average genome-wide coverage were removed from further analysis. Some lineages (defined by unique
barcode IDs) were sequenced multiple times, either due to low coverage in one library or due to sequencing multiple independent
clones containing the same barcode ID. Variants called from all libraries with the same barcode ID, regardless of origin, were com-
bined together. Importantly, please note that while the libraries weremapped to a non-reference genomewhich includes the barcode
locus sequence, all variants reported in this manuscript both in the main text and the supplemental files have been lifted over to the
coordinate system of the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) R64 Saccharomyces cerevisiae
reference genome for convenience.
FASTQ Processing, GATK-Based Variant Calling, and Filtering
For each sample, we received two fastq files, one for each read of the paired end sequencing (‘‘forward.fastq’’ and ‘‘reverse.fastq’’).
We trimmed the first 15 bases and the last 3 bases of each read as well as any adaptor sequences using TrimGalore (version 0.3.7
Available at: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).

perl trim_galore –a CTGTCTCTTATACACATCT –a2 CTGTCTCTTATACACATCT– –length 50 – –clip_R1 15 – –clip_R2 15 – –three_
prime_clip_R1 3 – –three_prime_clip_R2 3 – –paired -o OUTPUTDIR forward.fastq reverse.fastq

Reads were mapped using Novoalign (version 3.02.02, Novocraft Technologies) to a modified version of the sacCer3 S288C
S. cerevisiae reference genome that includes the DNA barcode locus (Levy et al., 2015) in the sequence.

novoalign –d referenceGenome.fasta –f forward.trimmed.fastq reverse.trimmed.fastq –l 75 –H22 –o SAM READGROUPINFO –r
Random library.novoalign.sam

The mapped reads were then sorted using PicardTools version 1.105(1632) (Broad Institute, http://broadinstitute.github.io/picard)
java –Xmx2g –jar SortSam.jar INPUT=library.novoalign.sam OUTPUT=library.novoalign.bam SORT_ORDER=coordinate

We used PicardTools again to remove PCR duplicates

java –Xmx2g –jar MarkDuplicates.jar ASSUME_SORTED=true REMOVE_DUPLICATES = true INPUT=library.novoalign.bam
OUTPUT=library.novoalign.dedup.bam
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After building an index for the bam file with PicardTools, we then got global coveragemetrics with GATK version 3.2.2 (McKenna et.
al. 2010) DepthOfCoverage function and per base pair coverage statistics using Bedtools v2.17.0 Quinlan et. al. 2010 genomecov.
We plotted the per base pair coverage statistics to identify whole chromosome aneuploidy events.

We genotyped the libraries using GATKs Unified Genotyper.

java –jar –Xmx2g GenomeAnalysisTK –T UnifiedGenotyper –R referenceGenome –I library.novoalign.dedup.bam –ploidy
2 – –genotype_likelihoods_model BOTH –stand_call_conf30 –stand_emit_conf 10 –o library.gatk.vcf

We initially filtered variants from GATK as follows:

java –Xmx2g –jar GenomeAnalysisTK.jar –T VariantFiltration –R referenceGenome – –variantlibrary.gatk.vcf – –out library.gatk.
filtered.vcf – –filterExpression ‘‘QD < 10.0 jj FS >20.0 jj MQ < 50.0 jj MQRankSum < –12.5 jj ReadPosRankSum < –8.0 jj AN >
10 jj AF<0.25’’ – –filterName ‘‘my_filter’’

Wealsomanually filtered all variants calledbyGATKby remapping themwith theCLCgenomicsworkbench andmanually validating
variants using the resulting read pileups. This procedure eliminated 11%of our GATK variant calls. We then tested the validity of 57 of
these filtered variants usingSanger sequencing, and identified no false positive calls.We combined all of the filtered variants across all
of the libraries into a single file (‘‘allLibraries.gatk.filtered.vcf’’) using GATK after lifting over the variant coordinates to the standard
UCSC sacCer3 reference genome.We then conducted additional variant filtering using custom scripts, where we removed anymito-
chondrial variants, variants not passing the GATK filter and variants annotated in reference genome as being in repetitive elements
(telomeres, centromeres, replication origins, transposable elements containing ‘‘Ty,’’ ‘‘delta,’’ ‘‘sigma’’ or ‘‘tau’’ in their name) or
low complexity regions defined by the Tandem Repeat Finder (Benson, 1999) with the recommended parameters (2 7 7 80 10 50
500 ngs). We also removed all variants with less than 3 reads of support for the derived allele. Heterozygous calls by GATK were vali-
dated by first testing whether they had at least 3 reads of support for both ancestral and derived alleles, and passed a binomial filter
with p>5% for deviation from an equal proportion of ancestral and derived reads. Variants that failed either of these filterswere reclas-
sified as homozygous. Heterozygous calls that did passwere then checked to see if they resided in homopolymer repeat regions or in
sites with multiple derived alleles across the entire dataset. Such variants were removed from the dataset as likely mapping errors.

As we found that mutations in the nutrient sensing pathway were highly adaptive, we searched the raw variant calls of clones with
s>5% but no nutrient sensing pathway mutations for filtered variants in this pathway and added them back into our mutation list (the
mutations reported in the main text include these variants). This was done for a total of 3 clones (one IRA1, one IRA2 and one CYR1).
Copy-Number Variant Detection
We tested for the presence of copy-number variants using a number of software packages, including CNVnator and SVDetect,
along with specific manual surveys of the coverage density around theHXT6/7 locus as amplifications of this locus have been shown
to be adaptive in previous chemostat laboratory evolution experiments. However, we were unable to detect any high-confidence
copy-number events either at this locus or genome-wide.
Structural Variant Detection with CLC-Bio
We systematically looked for the existence of structural variation in our sequenced clones, i.e., for the presence of insertions and/or
deletions larger than themaximum of 5-10 bp typically detected by our GATK-based variant calling pipeline, as well as chromosomal
inversions and translocations. We performed a workflow, described below, utilizing CLCGenomicsWorkbench version 8.5 (QIAGEN
Aarhus A/S; www.clcbio.com; API version:850; Build number:20150904114350; Build date:1509041143; Build rev:131279. Plat-
form:Mac OS X 10.10.5; Architecture:x86_64 (64 bit); Processor cores:24; Java version:1.8.0_60 (Oracle Corporation)). Note that
we will call the program ‘‘CLC Workbench’’ for brevity. First we imported the Illumina paired end fastq.gz files for each clone into
CLC Workbench, using the parameters ‘‘paired reads,’’ ‘‘remove failed reads,’’ ‘‘paired-end (forward-reverse),’’ minimum distance
25, maximum distance 1000, Illumina pipeline 1.8 and later quality scores.

We then mapped the reads to the unmodified S. cerevisiae (strain S288C) reference genome (downloaded from the Saccharo-
myces Genome Database (SGD; www.yeastgenome.org) R64-1-1 and then imported into CLC Workbench). We did not use any
masking during the mapping and used the following mapping parameters: mismatch cost 2, lineage gap cost, insertion and deletion
costs 3, length fraction 0.5, similarity fraction 0.5, auto-detect paired distances, map randomly for non-specific matches.

Reads were then trimmed by using the ‘‘Trim Sequences’’ function; trimming was done based on quality scores (limit 0.05); ambig-
uous nucleotides (maximum of 2) were also trimmed. Reads below 15 nucleotides in length were discarded. Any Nextera adaptor
sequences were trimmed from reads using the following sequence and parameters for trimming: sequence for adaptor trimming
CTGTCTCTTATACAC, strand ‘‘plus,’’ remove adaptor, mismatch cost 2, gap cost 3, allow internal matches with minimum score
4, allow end matches with minimum score at end 1.

We then ran the ‘‘InDels and Structural Variants’’ function, using these mapped and trimmed reads, with the parameters ‘‘p value
threshold 0.001’’ and ‘‘maximum number of mismatches 3,’’ and saved the ‘‘breakpoints’’ output files in tab-delimited formats. These
variants were filtered to remove structural variants with less than 3 reads of support, present in more than 3 strains or closer than
300bp from the ends of each chromosome. The variants were annotated with gene annotations (file SGD_features.tab) from the
Saccharomyces Genome Database (www.yeastgenome.org).
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After structural variant calling was completed, we filtered out structural variants that occurred in previously known repetitive ele-
ments annotated in the SGD database (telomeres, centromeres, replication origins, transposable elements containing ‘‘Ty,’’ ‘‘delta,’’
‘‘sigma’’ or ‘‘tau’’ in their name) as before.

Determination of Mating Type and Ploidy
Mating Type Assays
Mating type testing was conducted for 960 clones from replicate E2 and 192 clones from replicate E1. Standard Nat+ URA3- tester
strains of both MATa and MATamating types were grown as lawns on YPD agar plates, while the clones with unknown mating type
(Nat-, URA3+) were arrayed and grown on independent YPD agar plates. Replica plating was used to transfer the clones with un-
known mating type onto Nat+ Ura- SC-agar plates along with one of the tester strains. The presence of a colony on this plate
was used to determine successful mating.
Propidium Iodide and Flow Cytometry
Ploidy was initially tested using a simplified propidium iodide staining protocol designed for high throughput analysis, inspired by
Cousin et al. (2009). Clones were grown to saturation in YPD liquid media in 96 well plate format. 200 ml of saturated culture was
transferred to 96 well filter plates (Pall Life Sciences # 8039) and spun down to remove the spent media. These spun down cells
were resuspended in 200 ml 70% ethanol in the filter plates and allowed to fix for at least 1 hr at room temp. Plates were then centri-
fuged again to remove the ethanol. Cells were resuspended in 50 ml RNase A buffer (1mg/mL RNase A in PBS) and incubated at 37!C
for at least 6 hr (at most 18 hr). Treated cells were diluted 1:100 into 200 L of propidium iodide staining solution (50 mg/ml PI, 50 mM
sodium citrate) and analyzed along with standards of known ploidy using the BD LSR II with an HTS attachment at the Stanford
Shared FACS Facility (NIH grant # S10RR027431-01 for UV LSRII). We note that the filter plates can be re-used for ploidy analysis
by thoroughly washing them with distilled water using a multichannel pipette.
High Throughput Benomyl Assay
A simpler high throughput ploidy test was developed using the drug benomyl. Cloneswere grown from frozen stock in 1mL liquid YPD
in 96 well plates until saturation at 30!C without shaking. The saturated cultures were mixed by multichannel pipette, pinned onto
YPD+20 mg/mL benomyl (in DMSO) and YPD+DMSO (control) rectangular agar plates using a multi-pronged pinner, grown at 25!C
for 48 hr, and then imaged. Under these conditions, diploid growth is strongly inhibited by benomyl but haploid growth is less affected.

Construction of Gene Deletions in the Ras/PKA Pathway
Gene deletions were constructed using standard yeast transformation methods to replace the gene of interest with a selectable
marker cassette. IRA1, IRA2, GPB1, GPB2, PDE1, PDE2 and the pseudogene control YFR059C were individually replaced with a
selectable NatMX (nourseothricin) resistance marker in neutral barcoded yeast strains. For each target gene, the resistance marker
was amplified from the pBAR1 plasmid (Levy et al., 2015) with primers flanked by 45 bp of sequence adjacent to each end of the
appropriate yeast gene. Transformations were performed to delete the gene of interest using the lithium acetate based protocol
of Gietz and Woods (2002). Each transformant was verified with gene-specific PCR reactions spanning both the 50 and 30 insertion
breakpoints. We assayed the fitness of each deletion using pairwise competition assays described in Levy et al. (2015) and in the
main text methods.
Primers for gene deletions:

IRA1 50 CTTCAGCATATAACATACAACAAGATTAAGGCTCTTTCTAAAATGTGGAGGCCCAGAATACCCTCC
IRA1 30 AAGGAAAAACGTATATAATCACTGCAATACTCTAATTTAAAATTATCGACACTGGATGGCGGC
IRA2 50 TATCAACTAAACTGTATACATTATCTTTCTTCAGGGAGAAGCATGTGGAGGCCCAGAATACCCTCC
IRA2 30 AGATAGATATTGATATTTCTTTCATTAGTTTATGTAACACCTCTATCGACACTGGATGGCGGC
GPB1 50 CGGCTACTTTAAGGCTTTCCGTACCAATTCTTCTACATAAGAATGTGGAGGCCCAGAATACCCTCC
GPB1 30 AATTTTCTCGTTTTCCTTTAGTCACTCTTGTCACATAAGGATTATTCGACACTGGATGGCGGC
GPB2 50 GATTCATTGGCAGGTCCATTGTCGCATTACTAAATCATAGGCATGTGGAGGCCCAGAATACCCTCC
GPB2 30 CTAAACAAAGTTTACAAAGTGAAAGCATTGAAAACTGCCTTTTTATCGACACTGGATGGCGGC
PDE1 50 GGTTCTTCTTCTTCATCCCCTTTTTTACCAATATTCCTTTTTATGTGGAGGCCCAGAATACCCTCC
PDE1 30 TAATGGAAAGAAGTTTCATTAGTTACTACTAGTATTTTGCTTGCTTCGACACTGGATGGCGGC
PDE2 50 GAGATCACTACTACTTAATTGAAGAAAACATAACCTATTGATATGTGGAGGCCCAGAATACCCTCC
PDE2 30 ATGTTTATACAATGAATGGTACAAGAAATTTTGATATTCTTGCTATCGACACTGGATGGCGGC
YHR095W 50 CCATCAAATGTCGCAGCAGCTCATGTTTACGTTTGCTGTCTTCTGTGGAGGCCCAGAATACCCTCC
YHR095W 30 AATAAGCCCTAGAAACCTTACACCCTAATTTGCACAAGAAAACTATCGACACTGGATGGCGGC

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters including the exact values of n, precision measures (mean ± SEM) and statistical significance for various sta-
tistical tests are reported in the Main Text, Figures and the Figure Legends.
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Introduction to Fitness Estimation Methodology
The fitness of a barcoded lineage relative to the rest of the population determines how quickly it grows. If the number of cells in a
lineage is large at the bottleneck, then during the T=8 generations from cycle i to cycle i+1 the bottleneck population, n, grows close
to deterministically:

ni + 1znie
ðs"miÞT (1)

with mi the mean fitness of the population at time i. The time-dependent mean fitness cannot bemeasured directly, but the size of the
total barcoded population that is neutral with respect to the ancestor, ri, gives mi from ri +1=ri as s is the fitness of the barcoded line-
age relative to these neutral lineages.

The sequencing measurements give estimates of the relative sizes of a barcoded lineage from the numbers of reads, ri, of the bar-
code at successive time points as a fraction of the total reads,Ri. Comparing with the number of reads of the neutral barcodes, ri, the
fitness over cycle i is estimated by

bsi =
1

T
½lnðri + 1=Ri + 1Þ " lnðri=RiÞ%+mi (2)

=
1

T
½lnðri + 1=riÞ " lnðri +1=riÞ%

However, there are several sources of deviations of such estimates from the actual fitness. The experiments themselves contribute
biological stochasticity in the growth and division of cells, sampling during the dilution at the end of each cycle, and subtle variability
in conditions. The measurement process contributes counting noise from sequencing as well as potential variabilities and biases in
DNA extraction and PCR amplification.

The biological noise, dilution sampling, and sequencing counting noise should all have variance proportional to the mean numbers
of cells and/or reads. We find that for typically sized barcode lineages (& 100 reads), deviations from deterministic trajectories scale
as the square root of the number of reads, i.e.

VarðriÞzkihrii (3)

where ri is the number of reads at time i, hrii is the expected number of reads, and ki is a noise parameter inferred from the data which
depends on the cycle, the replicate, and the batch. Furthermore, we show that for the collection of neutral lineages, the distributions
of changes in read numbers from one cycle to the next are close to normal.

For large lineages (>103 reads), however, the data exhibit larger than expected variations which do not decrease with numbers of
reads. The sources of these variations are currently unknown. They set a limit ofT1% per generation on the resolution of our fitness
assay.

We use the data to crudely fit a multiplicative noise parameter ai at each cycle in addition to the normal variance. For the fitness
inferred over one cycle,

bsi = hsi j ri; ri + 1i (4)

the variance is then roughly of the form:

VarðsiÞ=
1

T2

!
ki

ri + 1
+a2

i

"
(5)

To infer fitnesses, we use a model assuming Gaussian additive noise at low frequency andmultiplicative noise at high frequency to
combine the results from across the cycles, replicates, and batches, weighted by the inverse variances.

In the next we further elucidate the fitness estimation process and break down the contributions to ki. We then carry out self-con-
sistency checks and justify our noise model. Finally, we present the results of the fitness assay broken down by batch and replicate,
and further discuss the hypothesis testing done in the main text.

Noise Model
Read Stochasticity
From the dynamics of the numbers of cells in a lineage, we expect that the mean number of reads at time i+1 will be

hri + 1i=
Ri + 1

Ri
rie

ðs"miÞT (6)

and thus dependent on the total numbers of reads, Ri and Ri+1.
The stochasticity in the population dynamics and the counting variations from the sequencing both give additive noise so that we

expect
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Varðri +1Þzkihri + 1i (7)

where ki is a parameter fit from the data for many barcode families. For nearly neutral lineages, there is only a weak dependance of ki
on s. Lineages with large s quickly reach a size where the additive model breaks down; we will use our multiplicative noise model to
analyze their fluctuations.
The contributions to ki depend on the parameters of the particular measurement: the total number of barcoded cells at the bottle-

neck,N B
i , and the number of reads,Ri both of which vary considerably. The average number of reads per barcoded cell, the coverage

ratio

Cih
Ri

N B
i

(8)

strongly affects the noise magnitude: when the coverage ratio is low, read noise dominates; when the coverage ratio is high, the bio-
logical noise dominates. The contributions to the noise parameter are

ki = 1|{z}
Read noise at i +1

+ Ci +1=Ci|fflfflfflfflffl{zfflfflfflfflffl}
Read noise at i

+ Ci + 1ðbi + 1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
growth+dilution

+ xið1+Ci + 1=CiÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Extraction=PCR noise

(9)

The first term comes fromPoisson read noise at time i+1 and the second term from the Poisson read noise at time i, scaled from the
coverage at i to the coverage at i+1. The third comes from the stochasticity in the growth of the cells. For a single cell at a bottleneck,
the number of descendants at the end of the cycle averages 2TesT with a variance of bi2

2T. Almost all this variability is likely to come
from the earliest stages of the cycle as when the number of descendants becomes large, the fluctuations are averaged over. After
dilution the biological stochasticity contributes bi per cycle to the variance. In addition, there is a factor of 1 that comes from the Pois-
son dilution at the end of each cycle. The last term xi accounts for the unknown additive parts of the effects of DNA extraction and
PCR amplification.
We assume that the variations are Gaussian in nature. This assumption was inspired by the additive nature of the noise sources,

and describe the data well. The assumption breaks down when ri is low or whenCi+1bi is large, since the biological noise is likely to be
non-Gaussian.
Number of Mutants and Coverage Ratios
In order to understand the balance between read noise and biological noise, we need to know the coverage ratio, Ci, at each time
point. We know the total number of reads, Ri, at each time point; however, we do not have a direct measurement of the total number
of barcoded cells,N B

i , at the bottleneck of each cycle. Since the total population saturates at a size that is roughly independent of the
admixture of mutants and ancestral types, after dilution the total bottleneck population, N , is roughly constant.
The barcoded portion can be inferred by noting that two portions of the total population, the unbarcoded ancestral cells with pop-

ulationN U
i , and the barcoded types that are neutral relative to the ancestor at time i, have the same fitness. Given fni the fraction of the

barcoded cells without adaptive mutations, the ratio of the neutral population sizes, fni N
B
i =N

U
i is thus constant.

If we know fni N
B
i =N

U
i at one time point, and fni at all other time points, we can solve for N B

i =N
U
i . We can then use N B

i =N
U
i and

N U
i =N #N B

i to approximate N B
i at each time point. Let fni N

B
i =N

U
i =q. Then we have

fni N
B
i

N #N B
i

=q

N B
i =

q

q+ fni
N (10)

Initially, the fraction barcoded is formulated to beN B
0y10%N . This gives allows us to calculate q (z0:03, similar across batches).

Using the sequencing reads, we can obtain fni at each time point and hence calculate an estimate for N B
i at each time point.

Figure S1 shows this estimate of the barcoded fraction of the population. At late times, a considerable fraction of the population is
barcoded, and a significant fraction of this barcoded population has adaptive mutations. The barcoded fraction increased rapidly as
a consequence of its original diversity. Roughly 50%of the barcoded cells had fitness >6%at the first time point, and 25%are diploid.
The rest were nearly neutral haploids. By the end of the experiment, >90% of barcoded cells were high fitness mutants. As barcoded
fraction of the pool increased, the read depth remained nearly constant. The coverage ratios decreased as a function of time. They
started at around 0.3-0.5, but fell to about 0.04-0.07 by the end of the experiment. We will see that means by late times, the errors in
fitness estimation are dominated by the read noise.
The beneficial mutants showed significant transient behavior in the first growth dilution cycle. In batches 1, 3, and 4, the barcoded

fraction (and therefore the beneficial mutants) did not increase appreciably in the first cycle. Batch 2 was grown for one growth/dilu-
tion cycle before time point 1 and does not display transient behavior in its first cycle.
To remove the effect of transient behavior on the fitness assay, we used the sequencing data from time points 2-5 for batches 1, 3,

and 4, and time points 1-4 for batch 2. The trajectories of the barcoded fractions are very similar across batches for the time points
chosen, and avoids the latest time point in batch 2 where the barcoded types have nearly taken over the population.
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While ki increases with increasing coverage ratio, the variance in the fitness estimate decreases with increasing read depth. For
large coverage ratios ðCi + 1 & Ci [1Þ, the variance reaches the minimal value

VarðsiÞz
1

T2

ð1+ biÞ
ni

(11)

where ni is the number of cells in the barcode family at the bottleneck at time point i. In this regime the noise is dominated by biological
fluctuations. This sets a noise floor for the measurement. For our measurements, only the first cycle (which was not included in the
analysis) was near this regime.
Inferences of s
In addition to the additive sources, there appears to be a roughly frequency independent component of the noise. The source of this
noise is unknown. For simplicity, as it does not affect much the results, we parametrize this by amultiplicative Gaussian noise param-
eter ai, fit within each batch for every pair of time points. We find that aiz0:1= cycle, largely independent of the cycle, replicate, and
batch. Then the assumed variance of our estimator is

VarðsiÞ=
1

T2

!
ki

hri + 1i
+a2

i

"
(12)

The fitness estimation algorithm proceeds in the following manner:

1. Identify lineages which are neutral relative to the ancestor for each replicate and batch individually.
2. Use the collection of these neutral lineages to estimate ki and mi.
3. Estimate ai for each batch and time point from lineages with a large number of reads.

We then carry out the follow steps for each barcode separately:

1. Use formulae for bsi and Var(si) (Equations 2 and 12) to calculate fitness and error at each time point.
2. Average over time points, replicates, and batches, using inverse variance weighting by errors, to get an overall estimate of the

fitness s of that barcode.

We give a more detailed account in the next two sections.

Checks on the Noise Model
We made a number of self-consistency checks to test the applicability of the simple additive noise model for lineages at low read
depth. We analyzed the following quantities:

d Distributions of within-replicate variations
d Scaling with read numbers of between replicate variations
d Comparison of within replicate to between replicate variations

Our analysis suggests that there is good agreement between within-replicate variation and between-replicate variation for moder-
ately sized (#100 reads) lineages. At late time points, the noise is dominated by the counting noise of sequencing.We show that this is
due to the expansion of the barcoded lineages. We also discuss the frequency-independent deviations for large (#1000 reads) lin-
eages, which limits the sensitivity of fitness assay to 10%/cycle (1.2%/generation).
Estimating k within Replicate
By considering the dynamics of large groups of lineages with identical fitness together, we can test the noise model. The large set of
lineages neutral relative to the ancestor (#1500) enables estimation of the noise parameter ki, with good enough statistics on the
noise to test its normality. It also lets us infer the time-dependence of the mean fitness, mi, which is needed to obtain the fitness
of the other lineages. We assume that the neutral lineages are virtually identical in both fitness and the magnitude of their biological
fluctuations.

The model assumes that the deviations of the read numbers ri + 1 $ hri + 1i are distributed asN ð0; kihri + 1iÞ for ri+1 large enough. We
define the normalized differences Zi as follows:

Zi =
ri + 1 $ hri + 1iffiffiffiffiffiffiffiffiffiffiffi

hri + 1i
p (13)

Given a collection of lineages with identical phenotype, the Zi are identically distributed asN ð0; kiÞ. The total frequency of a pheno-
type fi can be used to estimate mi. The distribution of scaled deviations can be used to find ki and test the noise model.

e12 Cell 167, 1–12.e1–e15, September 22, 2016

Please cite this article in press as: Venkataram et al., Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mu-
tations in Yeast, Cell (2016), http://dx.doi.org/10.1016/j.cell.2016.08.002



We carried out the following procedure using the !1500 lineages which were neutral in the experiments of Levy et al. (2015)

d Estimate mean fitness by mi = logðfi + 1=fiÞ=T.
d Plot distribution of Zi. Remove outliers (likely adaptive or outside regime of additive noise)
d Re-estimate mi. Re-plot Zi.
d Set ki =VarðZiÞ.

The first two rows of Figure S2 shows the distributions of the scaled deviations for each pair of adjacent time points in batch 1,
replicate 1. The top row shows the histograms of Zi from the neutral haploids as a function of time. The same analysis was carried
out on the 1600 diploid lineages: the results are shown in the second row and are very consistent with the haploid inferences.
The normal distribution predicted from theory is plotted in red over the empirical distribution histogram. The counting noise limit is

plotted in black. The noise starts off larger than the read counting noise limit, but is dominated by counting noise at the end. This is in
concordance with our observation that the coverage ratio decreases at late times, and suggests that the extraction and amplification
parts of the noise, xi — which would be expected also to scale with the read depth — is a small fraction of ki.
The model fits quite well over the range of 1-2 SDs. Only 10-20 lineages were removed from each plot as outliers; most were a few

SDs from the mean, and clearly adaptive. The normal fit is worst at the earliest time points, when the cells are first experiencing the
evolution condition, and the latest time point, where the number of reads is smaller. Our analysis also showed that the noise param-
eter inferred from lineages of different sizes did not vary significantly when different sized lineages were used to infer it (from 30 reads
up to 150). The diploids behaved similarly to the haploids in all these aspects, including the number of outliers.
The values of ki tend to start around 10, and drop down to around 2 at late times. The values vary between replicates and exper-

iments as can be expected by the different coverage ratios. Two replicates have very low coverage at one time point (batch 2 repli-
cate 2 and batch 3 replicate 3), which decreases the quality of fitness inferences for those datasets. The analysis for the diploids
found similar ki values. The diploid ki tended to be slightly higher than the haploid ki: by 5%–10% at early times, nearly identical
at late times.
The fact that the fluctuations are dominated by counting noise at the end of the experiment suggest that xi is small. If we set xi to 0,

and use theCi estimated previously, we can calculate the biological noise parameters bi using Equation 9. We get values bi in the 12-
17 range at early times and in the 5-10 range at late times.
Part of the difficulty estimating bi comes from the fact that coverage ratios are low (!0.1$0.2). Therefore, errors in estimation of

order 0.5 (from themean fitness estimate, coverage ratio, and xi) propagate up to errors in bi of order 2.5-5 at late times.More detailed
analysis and measurements would need to be conducted to yield a more quantitative estimate for bi and its uncertainty.
In previous experiments, the estimated values of bi started off low (around 4), but reached values as high as 15 at later times when

there were more mutants in the population. Since our experiments start off with a relatively high mutant fraction, our results are at
least roughly consistent with previous work. Large values of bi suggest that there is high variability when the populations are low:
i.e., variations in viability (surviving stationary phase), lag phase (time delay to start growth after dilution), and in the first rounds of
division.
Replicate-Replicate Correlation
As an independent test of the consistency of the noise model, we examined the correlation between replicates in the same batch and
compared to the inferred within-replicate noise parameters ki. Specifically, we looked at the sample SD of the log slope
si = lnðri + 1=Ri + 1Þ $ lnðri=RiÞ. The log slope was chosen since its variance can be shown to be

VarðsiÞz
ki

ri + 1
(14)

if our additive noise model holds with our definition of ki.
The final row of Figure S2 shows the sample SD dsi of the log slopes plotted against the number of reads at the second time point of

the cycle. The plots show the r$1=2
i +1 scaling as expected for a wide range of reads.

We can use the distribution of dsi to fit a k parameter, and compare it to the expected value. The 3 curves with the scaling r$1=2
i +1

show 3 different fits. The within replicate k from the variance of Zi is shown in red. In blue is the inference bk =E½
ffiffiffiffiffiffiffiffi
ri + 1

p
dsi&2 (between

replicate estimate). Black is the theoretical minimum value that the noise parameter could take if there was only read noise (bi=0).
For the first pair of time points, k from within a replicate is larger by Ci+1/Ci compared to the between replicate k. This is expected

since the first measurement is common for all replicates in a single batch (see STAR Methods). By late times, both estimates of k are
close to the being pure read noise.
Multiplicative Noise Regime
For each batch and time point, we roughly fit a frequency independent part of the noise by averaging dsi at high (!103) read number
(green line). We then modify the noise parameter ki to be

~ki = ki +a2
i ri + 1 (15)
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The multiplicative noise varies little across time points and experiments, typically !10%/cycle corresponding to uncertainties in
estimates of s of T1% per generation. For typical values of ki, the crossover between multiplicative noise and read noise occurs
at !103 reads. The multiplicative noise constant increases with time in batch 2, which is dominated by mutants at late times.

Fitness Assay
Basic Procedure
We used the fitness assay outlined earlier to calculate fitnesses and error estimates for each lineage, between every pair of time
points, replicates, and batches. For each replicate, we combined estimates across time points into an overall fitness estimate s
by an inverse variance weighted sum:

s=

 
X

i

bsi
.
VarðsiÞ

!, 
X

i

1
.
VarðsiÞ

!

(16)

VarðsÞ=

 
X

i

1
.
VarðsiÞ

!$1

(17)

This method gives the correct weighting for the max posterior estimate of the mean of a collection of Gaussian random variables
with equal means and unequal variances.

We averaged over time points within a replicate to obtain the fitness values reported for each replicate. We averaged once more
across replicates and batches to obtain the fitness values reported in the main text.
Distribution of Fitness Effects
Figure S3 shows the distributions of fitness effects from all the replicates and batches. The two colors correspond to the haploids and
the diploids respectively. As can be seen, almost all the lineages are either very close to neutral relative to the ancestor, or diploid.
Both the neutral haploids and diploids tend to have low coverage at late times, which gives broad peaks (typically in the 2% range)
compared to fitness differences (1.5%$3.5%). Due to systematic variation between batches, the diploid andmain haploid peaks are
well resolved only for some batches.
Replicate-Replicate Fitness Correlation
To test the data against our noise model we examined the replicate-replicate fitness correlation. High fitness lineages tend to have
lower errors due to higher read counts. Their errors are dominated by the multiplicative noise. We can see that the errors inferred via
the noise model are very similar to the observed variation between replicates.

Figure S4 shows all of the replicate-replicate correlations. The scale of the inferred error bars is consistent with the scale of the
differences in fitness between replicates, but systematic differences are clearly noticeable. Batch 1 shows good correlation across
all replicates. Batches 2 and 3 show systematic deviations of both the diploid and high fitness lineages. Some of the differences in
batch 2 explained by the low coverage time points in batch 2, replicate 2. The low coverage leads the inference to be dominated by a
single slope. Batch 3 replicate 3 looks systematically different from the other replicates in batch even at high coverage time points.
Cross-Batch Fitness Correlation
We next examine the correlations between batches, and found that these were worse than within-batch correlations. Figure S5
shows fitness-fitness correlations between the best replicates in each batch. (This is in contrast with Figure 2 in the main text, which
compares the averages over each batch.)
Systematic Differences between Batches for Specific Mutation Classes
Both the diploid and high fitness lineages exhibited systematic differences across batches. While the between replicate deviations
were in the 1$2%/generation range, the between batch differences were as high as 5%/generation.

The last panel in Figure S5 compares the fitnesses across replicates and batches for the GPB2, PDE2, and diploid classes. Esti-
mated error bars from the fitness assay are plotted. The fitnesses within a batch correlate well, with most deviations occurring in rep-
licates with low coverage time points. The overall batch-batch systematics are different for different types of mutations. For most
pairs of classes, the relative ordering does not change. However, some like PDE2 and GPB2 switch order in the different batches.
These differences suggest that the systematic deviations are notmerely an artifact of the fitness estimation algorithm and thus cannot
be consistently corrected for statistically.

Within the best replicates, there is a very narrow spread of all but one of the GPB2 mutant lineages, and all but one of the PDE2
lineages. This suggests that the intrinsic precision and potential accuracy of the barcode fitness assay is (1%.
Testing for Differences in Fitness Effect between Mutant Classes
The systematic cross-batch differences informed howwe tested for differences in fitness effects between different mutation classes.
We first carried out a number of ANOVA tests, for differences between genes, mutation types, and paralogs.

To test if gene identity was at all significant, we treated the batch as a categorical variable and still ended upwith aP<10$16. For our
tests of fitness difference of particular pairs, we carried out tests separately for each batch. We averaged over all time points and
replicates within a batch to get a single fitness per lineage.

e14 Cell 167, 1–12.e1–e15, September 22, 2016

Please cite this article in press as: Venkataram et al., Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mu-
tations in Yeast, Cell (2016), http://dx.doi.org/10.1016/j.cell.2016.08.002



Within each batch we tested the hypothesis that themeans of the fitness distributions for different classes were different. We found
significant differences in fitness between IRA1 and GPB1, IRA1 and IRA2, GPB1 and GPB2, and found that mutation type made a
significant difference in the fitness of IRA1 mutants (test was not significant for mutation type in IRA2). For the diploids, we found
that a third copy of chromosome 11 gave significant fitness benefit, but a third copy of chromosome 12 did not. Additional coding
mutations did not significantly change the fitness of diploids.
We also tested the null hypothesis that the distribution of IRA1mutants was the same as the distributions of PDE2 and GPB2mu-

tants. We used the non-parametric Kolmogorov-Smirnov (KS) test to test for any difference between distributions. The KS test com-
pares theCDFs of two empirical distributions, and compares the largest gap between them (which is distributed in away independent
of distribution). The fact that the data pass the KS tests as well give us confidence that our results are not due to noise-modeling
assumptions.
The results are also robust to changes in the fitness inference algorithm. If we instead use a weighted log-linear regression,

choosing ŝ by

bs = argmin
s

X

i

ðlogðri +1=Ri +1Þ # logðri=RiÞ+mi # sÞ2

ki=ri + 1
(18)

the fitness estimates change by $1% per generation at most. The differences in distributions and relative orderings of fitnesses
persist.

DATA AND SOFTWARE AVAILABILITY

Data Resources
All Illumina sequencing data (for both the whole-genome sequencing and the fitness measurement assays) can be found under NIH
BioProject: PRJNA310010.

Software
The software repository for the barcode counting code can be found at https://github.com/sunthedeep/BarcodeCounter.
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Supplemental Figures

Figure S1. Estimated Barcoded Fraction of Populations during Pooled Fitness Measurement, Related to Figure 2
By the later time points, barcoded lineages have expanded considerably. Note that timepoint 1 was not used for fitness calculations for Batches 1, 3 and 4;

however, the barcoded fraction is still around 10% at timepoint 2 for these batches.



Figure S2. Noise Analysis for Batch 1, Related to Figure 2
The first two rows of panels show histograms of scaled deviations Zi for haploid and diploid lineages over all cycles in replicate 1, including the predicted

distribution from the noise model (red) and counting noise limit (black). Typical read counts are 100 at the beginning of the experiment and 30 by the end. The last

row shows the SD of log-slope dsi vs. read number across all replicates. We expect the variance to scale as r!1. Scaling estimates are shown fromwithin replicate

(red), between replicate (blue), and counting noise (black). We find that noise is independent of read count at high frequency (green) and approaches the minimal

limit at late times.



Figure S3. Fitness Histograms for Barcoded Lineages, Related to Figure 2
Each row corresponds to the replicates in a batch. We plot haploids in blue, and known diploids in red. We find that the haploid-diploid separation is poorly

resolved in some experiments. Note that some fitness estimates in batch 2 replicate 2 failed due to low coverage at one of the timepoints.



Figure S4. Replicate-Replicate Fitness Comparisons, Related to Figure 2
Batch 1 displays the highest consistency between replicates, while in Batch 3 both diploids and high-frequency lineages show systematic deviations.



Figure S5. Batch Effects in Fitness Measurements, Related to Figure 2
The first 6 panels show batch-batch fitness comparisons. Here we show the best replicate from each batch to highlight deviations in the best of our mea-

surements. Note that this is slightly different from Figures 2C and 2D, where we do the batch-batch comparisons using the weighted average fitness across

replicates in the batch. Systematic divergences are at a scale of 1%–2% (per generation) for diploids, and larger for higher fitness lineages. The last panel shows

fitnesses for GPB2, PDE2, and diploid classes with the batches separated by black bars. We found that within replicate variation is in the 1%–2% range, while the

variation between batches can be as large as 5%. Systematic variation differs for different classes.



Figure S6. Distribution of Fitness Effects of the 418 Sequenced Clones Compared to that of the 4,800 Randomly Sampled Clones, Related to
Figures 1 and 4
We intentionally over-enriched for high-fitness lineages among our 418 whole-genome sequenced clones (fitness distribution shown in blue) as compared to the

fitness distribution of the 4,800 sampled clones (red), in order to sample as many adaptation-driving mutations as possible.



Figure S7. Frequency of Diploids throughout the Levy et al. Replicate Evolutions, Related to Table 1
Using frozen stocks of the Levy et al. (2015) time points, for each of the two independent evolution experiments (E1 and E2), we assayed the proportion of the

population that consists of diploid cells across the entire course of the evolution.


