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Recessive deleterious mutations are common, causing many genetic
disorders in humans and producing inbreeding depression in the
majority of sexually reproducing diploids. The abundance of recessive
deleterious mutations in natural populations suggests they are likely
to be present on a chromosome when a new adaptive mutation
occurs, yet the dynamics of recessive deleterious hitchhikers and their
impact on adaptation remains poorly understood. Here we model
how a recessive deleterious mutation impacts the fate of a genetically
linked dominant beneficial mutation. The frequency trajectory of the
adaptive mutation in this case is dramatically altered and results in
what we have termed a “staggered sweep.” It is named for its three-
phased trajectory: (i) Initially, the two linked mutations have a selec-
tive advantage while rare and will increase in frequency together,
then (ii), at higher frequencies, the recessive hitchhiker is exposed
to selection and can cause a balanced state via heterozygote advan-
tage (the staggered phase), and (iii) finally, if recombination unlinks
the two mutations, then the beneficial mutation can complete the
sweep to fixation. Using both analytics and simulations, we show
that strongly deleterious recessive mutations can substantially de-
crease the probability of fixation for nearby beneficial mutations, thus
creating zones in the genome where adaptation is suppressed. These
mutations can also significantly prolong the number of generations a
beneficial mutation takes to sweep to fixation, and cause the geno-
mic signature of selection to resemble that of soft or partial sweeps.
We show that recessive deleterious variation could impact adaptation
in humans and Drosophila.
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In diploids, the fitness effect of having a single copy of a mu-
tation depends not only on the mutation’s selective effect, s,

but also on its heterozygous effect, h. A fully recessive mutation
(h= 0) is hidden in the heterozygote (hs= 0), and a fully domi-
nant mutation (h= 1) is completely exposed (hs= s). Although it
is generally agreed that beneficial mutations that reach fixation
tend to be dominant (i.e., h≥ 0.5) (1, 2), both empirical data and
theoretical models (3–6) suggest that many strongly and even
moderately deleterious mutations are likely to be recessive
(i.e., h< 0.5). For example, studies of de novo mutations from
both mutation accumulation and mutagenesis experiments in
Drosophila melanogaster, Saccharomyces cerevisiae, and Caeno-
rhabditis elegans have repeatedly found that strongly deleterious
mutations tend to be completely recessive (h≈ 0) and more weakly
deleterious mutations tend to be partially recessive (h≈ 0.1) (7–13).
Furthermore, studies of natural populations have found that
inbreeding depression is pervasive across sexually reproducing
diploids and is mainly caused by recessive deleterious variation
(reviewed in ref. 14). For example, in natural populations of
Drosophila, approximately 30% of chromosomes carry a recessive
lethal, and chromosomes that do not carry a recessive lethal suffer
from at least 30% depression in homozygous fitness (15–24). These
data suggest that many, if not most, deleterious mutations are likely
to be fully or partially recessive, and such mutations can have a
moderate to strong fitness effect in the homozygote.
It is thus possible that when a new adaptive mutation occurs, it

will land on a chromosomal background containing one or more

recessive deleterious mutations. It is well established that in fi-
nite populations, the fate of a new adaptive mutation should be
affected by its genetically linked neighbors. For example, the rate
of fixation of beneficial mutations at a single site will be lower if
there are additional sites subject to positive or negative selection
along the chromosome (25–30). This “Hill−Robertson” or “link-
age” interference can be alleviated by recombination, allowing
adaptive mutations to combine onto the same background or es-
cape deleterious neighbors (31–35). In addition to affecting the rate
of fixation of beneficial mutations, a deleterious mutation geneti-
cally linked to a beneficial mutation can “hitchhike” to high fre-
quency or even fixation (36, 37). These theoretical predictions are
beginning to be borne out in empirical data (38–47).
Despite the large body of work on hitchhiking and observa-

tions of recessive deleterious mutations in real organisms, there
is a gap in our understanding of how recessive deleterious mu-
tations affect adaptation. Models of hitchhiking have primarily
focused on mutations with codominant effects, thus necessarily
emphasizing the hitchhiking of weak deleterious mutations with
stronger advantageous ones. Although recessive strongly deleteri-
ous mutations are expected to have a lower probability of hitch-
hiking to fixation than weaker codominant ones (48), recessive
deleterious mutations can still have a profound impact on the dy-
namics of adaptation.
Here we develop a model for the dynamics of a dominant ben-

eficial mutation that is initially genetically linked to a recessive
deleterious mutation of larger effect (jsdj> jsbj), with varying rates
of recombination. Provided the recessive deleterious mutation is
sufficiently hidden in the heterozygote (jhdsdj< jhbsbj), hitch-
hiking occurs even when the beneficial mutation has a smaller
fitness effect than its deleterious hitchhiker. We show that the
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frequency trajectory of a beneficial mutation in this case is dra-
matically altered, causing what we have termed a “staggered
sweep,” whereby the linked mutations are balanced for a period
before recombination unlinks them. This balancing selection is a
type of associative overdominance. However, instead of the classic
case of two recessive deleterious mutations in repulsion or a neutral
mutation linked to a single overdominant one (49, 50), our case
results from a recessive deleterious mutation linked to a dominant
beneficial mutation of weaker selective effect.
Using our model, we show that recessive deleterious mutations

can substantially lower the fixation probability of nearby beneficial
mutations, thus creating zones around recessive deleterious mu-
tations where adaptation is suppressed. Although it has been ob-
served before in models of balancing selection that alleles balanced
at low frequencies in finite populations can drift out of a pop-
ulation with higher probability than a neutral mutation (51–53), we
have derived, for the first time (to our knowledge), an analytic
solution for the distribution of extinction times. In addition to
affecting the fixation probability of a beneficial mutation, we
demonstrate that a recessive deleterious hitchhiker can lengthen
the duration of a selective sweep and alter the genomic sweep
signature, compared with a classic hard sweep. We show that these
effects are strongest in small populations, at low recombination
rates, and when the recessive deleterious hitchhiker is much
stronger than the beneficial mutation in homozygotes. We end by
estimating how common this effect could be inD. melanogaster and
humans, showing that it may play a potentially important role in
adaptation for both natural and laboratory populations.

Results
We first develop a heuristic understanding of staggered sweeps
as an interaction between three effects: balancing selection, re-
combination, and genetic drift. We then derive analytic pre-
dictions for the dynamics of staggered sweeps and compare our
results with forward simulations. Throughout our analysis, we
emphasize scaling and parameter dependence over the details of
constant factors. This is intentional. Scaling properties hold
generally across different models studied, whereas the constant
factors typically do not. For example, the fixation probability of a
beneficial mutation is frequently quoted as 2s; however, the
constant 2 depends on the details of the stochastic model (it is
inversely proportional to the variance in offspring number). The
scaling with the selective effect, s, however, is general. For this
reason, we do not distinguish between constant factors and in-
stead emphasize the scaling (e.g., fixation probability of ∼s).

Model. Consider a population of N diploid individuals in which two
sites are genetically linked along a chromosome such that an an-
cestral haplotype with no mutations is denoted OO. The first site
can harbor a beneficial mutation with selective effect sb and het-
erozygous effect hb, the second site can harbor a deleterious mu-
tation with effects sd and hd, and there is a recombination rate l× r
between them (base pair distance × recombination rate per base
pair per generation). When a new adaptive mutation lands on a
chromosome harboring an existing recessive deleterious mutation, it
generates a BD haplotype, and in the absence of recombination (for
the moment) a BD=OO diploid will have heterozygote advantage.
This is apparent from the fitnesses of the diploids,

fitness  of  OO=OO  diploid≈ 0 [1]

fitness  of   BD=OO  diploid≈ hbsb − hdsd ≈ sb [2]

fitness  of   BD=BD  diploid≈ sb − sd ≈−sd [3]

where we assume selection coefficients to be small (sb � 1,
sd � 1) and the selection coefficient of the deleterious mutation

to be much larger than that of the beneficial mutation (sb � sd),
and, for the final approximation, we further assume the benefi-
cial mutation to be completely dominant and the deleterious
mutation to be completely recessive (hb ≈ 1, hd ≈ 0). We empha-
size that our model and analytic predictions can be extended to
cases of partial dominance (i.e., hd ≠ 0, hb ≠ 1), as long as the
effect of the beneficial mutation in the heterozygote is stronger
than that of the deleterious mutation (hbsb > hdsd) but its effect
in the homozygote is weaker (sb < sd) (SI Text, sections 1 and 2).
The new beneficial mutation will thus be subject to balancing

selection on the BD haplotype and held at an equilibrium fre-
quency. However, this balanced state is temporary (Fig. 1). If re-
combination generates a BO haplotype, unlinking the beneficial
mutation from the recessive deleterious hitchhiker, then the ben-
eficial mutation can complete the sweep to fixation, sometimes
with a substantial delay (Fig. 1A). We call this a staggered sweep.
Alternatively, the BD haplotype may drift to extinction before the
beneficial mutation is able to escape via recombination (Fig. 1 B
and C, red trajectories). Extinction is particularly probable if the
number of copies of the BD haplotype at equilibrium is small and
therefore drift is strong. As these simulations suggest, the prob-
ability of fixation and the sweep duration for a new beneficial
mutation with a recessive deleterious hitchhiker can be sig-
nificantly altered depending on the interaction of balancing
selection, recombination, and drift, which we now quantify.
Balancing selection. At low frequencies, the BD haplotype will pri-
marily occur in heterozygotes where the recessive deleterious al-
lele is hidden. As a result, the BD haplotype will be subject to
positive selection. In contrast, at high frequencies, the BD haplo-
type will primarily occur in homozygotes where the recessive
strongly deleterious allele is exposed, resulting in selection that
drives the BD haplotype down in frequency. These opposing forces
cause balancing selection. The change in frequency per generation
due to selection, SðpÞ, is thus frequency dependent,

strength  of   selection= SðpÞ≈ sbp− sdp2 +O
�
sdp3

�
[4]

(valid for p � 1; SI Text, section 1). The first term reflects selec-
tion on heterozygotes with fitness ≈ sb that occur with probability
≈ p, and the second term reflects selection on homozygotes with
fitness ∼−sd that occur with probability ∼p2 (note that the term
Oðsdp3Þ will be ignored from this point forward as it is very small
for p � 1). The stable fixed point or equilibrium frequency can
be found by setting SðpÞ= 0,

equilibrium  frequency= pp ≈
sb
sd

[5]

(derivations of pp and SðpÞ for arbitrary selection and dominance
coefficients can be found in SI Text, section 1). In the absence of
drift and recombination, a BD haplotype that reaches equilib-
rium frequency will remain there indefinitely.
Escape via recombination. The beneficial mutation can reach fixation
if two conditions are met. First, there must be a recombination
event in a heterozygote BD=OO individual that creates a BO hap-
lotype. Second, this newly created BO haplotype must survive the
effects of drift (to “establish” in the population) and proceed toward
fixation. We call this “escape” of the beneficial mutation. In each
generation, the probability of escape is proportional to the number
of copies of the BD haplotype [∼N p(t)], multiplied by the proba-
bility of a recombination event creating a BO haplotype (∼rl), and
the probability of establishment of this new BO haplotype (∼sb).
Thus, the total probability of an escape event by time t is

probability  of   escape≈ rlsbN
Z t

0

p
�
t′
�
dt′ [6]
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(which is valid for a probability of escape � 1). Provided pðt′Þ is
known, we can calculate the probability that the beneficial mu-
tation escapes its deleterious background. We note that if the BD
haplotype is held stably at equilibrium frequency, then pðt′Þ≈ pp.
However, as discussed in the Drift section below, this is not
always the case.
Drift. Despite the balancing selection driving the BD haplotype
toward equilibrium frequency, sometimes the BD haplotype can
go extinct before a recombination event occurs. This extinction
event, which we call “loss,” is driven by random fluctuations in

frequency due to genetic drift. The variance in frequency per
generation due to drift, DðpÞ, is

strength  of   drift=DðpÞ≈ pð1− pÞ
N

. [7]

To compare the relative effects of drift and selection, one can
consider two characteristic timescales. The first, τS = δp=S, is the
time for selection alone to change the frequency of the balanced
haplotype by δp. The second, τD = δp2=D, is the time for drift
alone to change the frequency of the balanced haplotype by δp.
The ratio of these two timescales tells one which of the two
processes is faster, and hence which dominates the dynamics,

speed  of   selection
speed  of   drift

=
τD
τS

= δp
S
D
= δp

sbp− sdp2

pð1− pÞ=N. [8]

Because we are interested in changes in frequency that lead
to extinction, the natural choice for δp is approximately p (SI
Text, section 2). With this simplification, τD=τS ≈Nðsbp− sdp2Þ=
NSðpÞ, which we can now use in Fig. 2 to understand the transi-
tion points between frequency ranges that are drift dominated or
selection dominated. Selection will be more important whenever
SðpÞ= sbp− sdp2 (solid curve) is larger than 1=N (dashed lines),
such that drift dominates for frequencies near 0,1, and pp (light
shading) and selection dominates in the alternate intervals (dark
shading). Positive selection is strongest (causing the largest pos-
itive changes in frequency) at a frequency approximately midway
to equilibrium, such that at frequency p≈ pp=2 the strength of
selection is Smax ≈ s2b=sd. As the relative strength of drift to selec-
tion becomes larger, the size of the drift intervals widens, even to
the point where drift dominates for all frequencies below equi-
librium (Fig. 2 A vs. B).
If drift is sufficiently strong, the BD haplotype can fluctuate

to extinction. The probability that this occurs depends on the
maximum strength of positive selection (Smax) relative to the
strength of drift (1=N) (SI Text, section 2). We call this ratio α,

α=
max  speed  of   positive  selection

speed  of   drift
=NSmax =

Ns2b
sd

. [9]

The dynamics of the BD haplotype are qualitatively different for
α � 1 and α � 1. In the α � 1 regime, there is a region below pp
where selection dominates (Fig. 2A), and thus the BD haplotype
can establish in the population and stagger at the equilibrium
frequency with relatively small fluctuations due to drift. In the
α � 1 regime, there is no region below pp where selection dom-
inates over drift (Fig. 2B), in which case there is no true estab-
lishment or balanced phase for the BD haplotype and it can
easily go extinct. There is a crossover where α≈ 1 in which se-
lection and drift are of similar magnitudes. Below, we derive
analytic expressions to predict the beneficial mutation’s proba-
bility of fixation and total sweep duration in the two distinct
regimes (α � 1 and α � 1) under the forces of selection, drift,
and recombination. We confirm our results with simulations.

Predictions for the Regime of Strong Selection and Weak Drift (α≫ 1).
Probability of fixation. In order for the beneficial mutation to reach
fixation from equilibrium, it must avoid fluctuating to extinction
before a recombination event can unlink it from its deleterious
hitchhiker. The probability of fixation is therefore determined by
which event occurs first: loss or escape.
Loss of the BD haplotype occurs only if it can fluctuate over

the relatively high selective barrier (Smax). The process is similar
to chemical reactions, where there is an “activation energy” and
the reaction rate depends exponentially on the ratio of the bar-
rier height to the strength of noise (e.g., Arrhenius’ equation for
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Fig. 1. Frequency trajectories of a beneficial mutation genetically linked
to a recessive deleterious hitchhiker. Plotted trajectories are from 50 sim-
ulations that reached an equilibrium frequency of p*= sb=sd, where blue
indicates simulations that fixed the beneficial mutation and red indicates
simulations in which it goes extinct (red tick marks below frequency zero
mark the generation of extinction). (A) For α � 1, selection dominates, and
the BD haplotype staggers stably at the equilibrium frequency waiting for
a recombination event that allows the beneficial mutation to escape on a
BO haplotype to fixation. In this regime, loss of the beneficial mutation is
very rare, and the staggered sweep can last for a substantial time. (B) For
α≈ 1, selection and drift are both important, and the BD haplotype stag-
gers at the equilibrium frequency but with strong frequency fluctuations
due to drift that can drive the BD haplotype to extinction (but not fixation)
before an escape event occurs. (C ) For α � 1, drift dominates, and the
BD haplotype never stably staggers; thus frequency changes are domi-
nated by drift. Note that it cannot drift to fixation because of the re-
cessive deleterious mutation (Fig. 2). Unless a recombination event occurs
very early, the beneficial mutation will fluctuate to extinction on the
BD haplotype.
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chemical reaction rates). Thus, it can be shown (SI Text, section
2.1) that the time to loss, independent of escape via re-
combination, is an exponentially distributed random variable with
rate λl and mean τl

rate  of   loss= λl ≈
sb

ln½α� e
−α mean  loss  time= τl ≈ 1=λl , [10]

which we have verified using simulations (SI Text, section 4.1).
Escape of the beneficial mutation from equilibrium to fixation

can also be modeled as an exponential process. In this regime of
strong selection and weak drift, the BD haplotype is held closely
to equilibrium; thus the probability of escape from Eq. 6 sim-
plifies to ðrlNsbÞðsb=sdÞt. In this case, escape, independent of loss
via drift, occurs at rate λe with mean τe,

rate  of   escape= λe ≈
rlNs2b
sd

= rlα mean  escape  time= τe ≈ 1=λe ,

[11]

which we have verified using simulations (SI Text, section 4.2).
The overall probability of fixation for a new beneficial muta-

tion that lands on a recessive deleterious background is then the
product of the probability that a new BD haplotype establishes
and reaches equilibrium (∼sb) and the probability that the first
escape event occurs before the first loss event [≈ τl=ðτl + τeÞ],

probability  of   fixation≈ sb

�
τl

τl + τe

�
, [12]

which we have verified using simulations [Fig. 3 D–F (α� 1) and
SI Text, section 4.4]. The probability of fixation of the adaptive
mutation will be reduced relative to an identical adaptive muta-
tion with no recessive deleterious hitchhiker whenever τl K τe,
which is when loss is faster than escape.
Sweep time. If the beneficial mutation is not driven to extinction,
the duration of a beneficial mutation’s sweep to fixation can be
substantially extended if it’s genetically linked to a recessive
deleterious hitchhiker (Fig. 1A). To understand when this occurs,
consider that the total time of a successful sweep will, on average, be
prolonged by the time it takes for an escape event to occur,

average  sweep  time≈
ln½Nsb�

sb
+
�
1
τe
+
1
τl

�−1

, [13]

which we verified with simulations [Fig. 4 C–F (α� 1) and SI Text,
section 4.5]. The first term corresponds to the sweep time for a
single adaptive mutation with no hitchhiker, and the second term
is the extension in sweep time due to the staggered phase (for
more discussion of the leveling off of sweep times at low recom-
bination rates, as in Fig. 4 C and D, see SI Text, section 4.5).
Zones of altered adaptation around a recessive deleterious allele. We
can understand the effect of recessive deleterious variation on
the genome in terms of a base pair distance around every re-
cessive deleterious mutation within which the dynamics of ad-
aptation are altered (SI Text, section 3). A recessive deleterious
hitchhiker will drastically suppress the probability of fixation of a
linked beneficial mutation whenever τl < τe, translating to a dis-
tance, ll, around the deleterious mutation within which new
beneficial mutations of effect size sb (or smaller) have a reduced
chance of fixation (ll ≈ λl=rα, red dashed lines in Fig. 3 D−F).
This distance can be substantial for values of α that approach
unity (Fig. 3D). Similarly, using Eq. 13, we can derive a distance,
le, around a recessive deleterious mutation within which new
beneficial mutations of effect size sb have an extended sweep
time (le ≈ sb=rα ln½Nsb�, red dashed lines in Fig. 4 C−F). Again,
this distance is largest for smaller values of α (Fig. 4 C and D);

however, the sweep duration is longest in large α regimes at small
recombination rates (Fig. 4 E and F). Note that the overall im-
pact of recessive deleterious mutations on adaptation will de-
pend on the density and strength of these deleterious mutations
and whether their zones of altered adaptation might overlap
(further explored in Discussion).

Predictions for the Regime of Weak Selection and Strong Drift (α≪ 1).
Probability of fixation. In this regime, selection for the beneficial
mutation is not strong enough to hold the BD haplotype close to
equilibrium frequency (as in Fig. 1C). Instead, the dynamics of
the staggered sweep are dominated by a combination of drift
(due to 1=N > Smax) and selection against the recessive delete-
rious mutation. In this case, the beneficial mutation on the BD
haplotype can easily drift to extinction, but it is very unlikely to
drift to fixation. It can be shown (SI Text, section 2.3) that the
upper limit to which the BD haplotype will typically drift is

A

B

Fig. 2. A model of drift and balancing selection (without recombination).
(A) Schematic of α=NSmax > 1 regime, where the maximum positive effect of
balancing selection (Smax ≈ s2b=sd) is stronger than the effect of drift (1=N). In
this regime, the BD haplotype can balance at an equilibrium frequency and
then either escape to fixation via recombination (as in Fig. 1 A and B, blue
trajectories) or drift to extinction (as in Fig. 1B, red trajectories). The rate
of drifting to extinction from equilibrium depends primarily on α≈Ns2b=sd.
(B) Schematic of α=NSmax < 1 regime, where the maximum positive effect of
balancing selection (Smax) is weaker than the effect of drift (1=N), and thus
frequency dynamics of a balanced haplotype are always dominated by drift
near (or below) equilibrium frequency. In this regime, the BD haplotype
neither establishes nor stably balances, and thus primarily drifts to extinction
before an escape event occurs (as in Fig. 1C).
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∼
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
copies, at which point selection against homozygotes

becomes stronger than drift and pushes the BD haplotype back
down to lower frequencies. Thus, the distribution of extinction
times of the BD haplotype will be approximately neutral (power-law
distributed as ∼ 1=t2), but it cannot be much longer than ∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
generations (verified using simulations, SI Text, section 4.3).
We are interested in the probability that escape occurs before

loss of the BD haplotype. Consider an interval dt in which there is
a fraction of BD haplotypes that go extinct (which scales as dt=t2

from neutrality), and a fraction of BO haplotypes that escape via
recombination (which scales as rlsbt2 from the total number of
BD haplotypes that have existed by time t). The product of these
two gives a constant probability of escape (∼ rlsb   dt). Recalling
that the BD haplotype will typically drift for only ∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
gener-

ations, we can use Eq. 6 to calculate the probability of fixation for
the beneficial mutation to be ∼ rlsb

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
(SI Text, section 2.3). We

have verified with simulations that this predicts the probability of
fixation of the beneficial mutation [Fig. 3 A–C (α � 1) and SI Text,
section 4.4].
Sweep time.Although the probability of fixation for the beneficial
mutation can be significantly decreased in the α � 1 regime, the
total sweep time of the beneficial mutation is not expected to
substantially change. This is because if it is to escape at all, it must
do so in the first ∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
generations, which is generally a small

fraction of the classic sweep time ∼ lnðNsbÞ=sb. This prediction of
no alteration in sweep time in the α � 1 regime was confirmed with
simulations (Fig. 4 A and B and SI Text, section 4.5).

Zones of altered adaptation around a recessive deleterious allele. We
can again understand the effect of recessive deleterious variation
on the genome in terms of a base pair distance around every
recessive deleterious mutation within which the dynamics of
adaptation are altered. Because the sweep time is not signifi-
cantly altered in this regime of weak selection and no drift, there
is no relevant distance within which sweep time is extended.
However, a recessive deleterious hitchhiker will drastically sup-
press the probability of fixation of a linked beneficial mutation
whenever rl

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
< 1 (SI Text, sections 3.2 and 4.4). The dis-

tance in this case (ll ≈ r−1
ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
) can be substantial for realistic

N, sd, and r. For example, all panels in the α � 1 regime in Fig. 3
(Fig. 3 A−C) show that a beneficial mutation will have a re-
duction in its fixation probability even when it is ∼1 Mb away
from the recessive deleterious hitchhiker.

Simulations. To test our predictions, we conducted two-locus
Wright−Fisher forward simulations (Figs. 3 and 4 and SI Text,
sections 2 and 4). Simulations start by seeding the BD haplotype
at 1 copy and the OO haplotype at N − 1 copies, and recording
the frequency of the four possible haplotypes over time.
Simulations were performed over a wide range of selection
coefficients (sb = 0.001− 0.1, sd = 0.01− 1), recombination rates
(lr= 10−8 − 10−1), and population sizes (N = 102 − 105), corre-
sponding to ranges of α=Ns2b=sd = 10−3 − 105. All simulations used
sb ≤ sd and heterozygous effects of hd = 0 and hb = 0.5 such that the
equilibrium frequency p* ≈ sb=2sd ≤ 1=2 (analytics were changed
appropriately to allow for hb = 0.5). We also included a one-locus
control of an adaptive mutation with no deleterious hitchhiker
for comparison. Note that figures are plotted using r= 10−8 (cor-
responding to 1 cM/Mbp).
Figs. 3 and 4 show that our analytic expressions (black lines)

predict simulation results (data points) and thus accurately capture
the parameter dependence. Furthermore, the simulations confirm
that an adaptive mutation that lands within a distance ll of the
recessive deleterious mutation (red dashed line in Fig. 3) has a
reduced probability of fixation, and an adaptive mutation that
lands within a distance le of a recessive deleterious mutation (red
dashed line in Fig. 4) has an increased sweep time.
The effect of the recessive deleterious mutation on the prob-

ability of fixation of linked beneficial mutations can extend for
very large genomic distances, especially for weakly adaptive sites
(Fig. 3 and SI Text, sections 3.1, 3.2, and 4.4). For instance, when
sd = 0.1 and N = 104, any adaptive mutation with sb ≤ 0.001 will
satisfy α< 1 and thus have a fixation probability that is sub-
stantially reduced within ll ≈ 3× 105 base pairs of the recessive
deleterious mutation (Fig. 3C). However, if the effect size of the
adaptive mutation is increased to sb = 0.05, the probability of
fixation recovers to about the same level as an adaptive mutation
with no deleterious hitchhiker (Fig. 3F). In general, any recessive
deleterious mutation will suppress fixation of nearby adaptive
mutations if sb ≤

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
is satisfied.

The sweep time of adaptive mutations that reach fixation, on
the other hand, is impacted for small α values that still satisfy
α> 1 (Fig. 4 and SI Text, sections 3.1, 3.2, and 4.5). In this regime,
the adaptive mutation can reach a stable equilibrium frequency
(due to α> 1), where it has a slow rate of loss (τl > ln½Nsb�=sb) but
the rate of new recombinants being generated in the population
is not so large that the staggered sweep is resolved quickly
(τe > ln½Nsb�=sb). For example, when a new adaptive mutation of
effect sb = 0.05 lands 103 base pairs away from a recessive dele-
terious mutation of effect sd = 0.1 in a population of N = 103, the
mean sweep time is ∼15 times as long compared with a new
adaptive mutation with no hitchhiker (Fig. 4E). In this scenario,
where α= 25, an extension in sweep time will occur even if the
adaptive mutation lands within a distance le ≈ 104 base pairs of
the recessive deleterious mutation. As α increases, this distance
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Fig. 3. Analytics predict simulation results for the fraction of staggered
sweeps that reach fixation. The y axis is the fraction of simulations in which
the beneficial mutation reaches fixation relative to a one-locus control with
no hitchhiker, and the x axis is base pair distance between the linked sites.
The population size (N) used in each panel is indicated by the figure row
headings, and the beneficial mutation effect size (sb) used in each panel is
indicated by the figure column headings, such that A–C fall into the α < 1
regime, and D–F fall into the α > 1 regime. Points represent results of 1,000/sb
simulations (where bars indicate 95% binomial proportion confidence in-
terval), solid lines indicate our analytic predictions (A−C use Eq. S31 due to
α< 1, and D−F use Eq. 12 due to α>1). Red dashed lines are analytic predictions
for the distance ll below which the probability of fixation becomes suppressed
(A−C use Eq. S37 and D−F use Eq. S33). All simulations used sd =−0.1. We have
translated recombination rate r × l between the sites into base pair distance
using a human recombination rate per base pair per generation r = 10−8.
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decreases such that the duration of staggered sweeps are most
extended for intermediate values of α (Fig. 4E).

Discussion
Using a two-locus model, we have shown that recessive delete-
rious mutations can (i) decrease the rate of fixation and (ii) in-
crease the sweep time of linked adaptive mutations with similar
or weaker fitness effects. Here we discuss to what extent these
two effects are likely to occur in real populations and how they
can alter signatures of selection.

Impact of Recessive Deleterious Mutations in Real Populations. Every
recessive deleterious mutation has a zone around it within which
adaptive events are suppressed (SI Text, section 3), and thus their
overall effect on adaptation will critically depend on the density
and strength of these deleterious mutations. Although these
mutations are likely to appear in functional regions of the ge-
nome, their actual densities are not yet well understood. Thus,
focusing on coding genes, we use what data can be found for the
densities of deleterious mutations for both D. melanogaster and
humans to derive order-of-magnitude estimates for the impact of
recessive deleterious variation on adaptation in real populations
(Table 1 and SI Text, section 3.5).
Data on the abundance of recessive lethals (sd = 100%) are

perhaps the most unambiguous. They are thought to occur at a
rate of ∼ 0.3− 1.0 per genome in both humans and Drosophila

(24, 54), which translates to 1 per ∼20,000 coding genes in hu-
mans and 1 per ∼12,000 coding genes in Drosophila. The density
of mildly deleterious recessive mutations is less well character-
ized; however, they are thought to be much more abundant (14).
One estimate in Drosophila places the number of mildly dele-
terious recessive mutations (sd ∼1%) at about 200 per autosome
(20), which is 1 per ∼30 coding genes. There are no data like
these for humans yet; thus we use the Drosophila density as a
starting point for a range of possible densities. The size of the
zones around these deleterious mutations depends on multiple
parameters (N, sd, sb, r), where, for example, a recessive lethal in
a natural Drosophila population impacts a region of ∼100 kb, but
in humans, the size of this zone is ∼1 Mb (Table 1, column 4).
The overall impact of recessive deleterious mutations on ad-

aptation will depend not only on their densities but also on the
density of functional regions (in this case, coding genes) around
each deleterious mutation. Estimates of gene density are cur-
rently quoted at about 1 gene per ∼100 kb in humans and 1 gene
per ∼10 kb in Drosophila (55, 56), yet a significant proportion
of genes are clustered in both organisms, especially in humans
(57, 58). Thus, we frame our estimates in terms of coding gene
densities within a given zone size, where we used the Drosophila
and human reference genomes to estimate the gene density
around every coding gene (column 4 brackets in Table 1;
method in SI Text, section 3). For example, a recessive lethal
in a human population is likely to suppress adaptation for
∼1 Mb around itself, which contains on average ∼20 other
coding genes (SI Text, section 3.3). Given the density of re-
cessive lethals, this translates to only about 0.1% of human
coding genes within which adaptation is suppressed (Table 1).
Although the impact of recessive lethals is unlikely to be very

dramatic, mildly deleterious mutations paint a very different
picture (Table 1). For example, a mildly deleterious mutation in
a wild Drosophila population affects about 10 kb around itself,
within which there are typically three other coding genes (SI Text,
section 3.3). This translates to ∼ 10% of coding genes within Dro-
sophila that are impacted. These effects become exacerbated in the
context of smaller population sizes, as might be seen in experi-
mental populations. For example, in a Drosophila population of
N = 1,000 flies, beneficial mutations with effect size ≤0.3%will have
suppressed fixation probabilities in the entirety of the Drosophila
genome (Table 1). If we consider the beneficial mutations that do
fix (SI Text, section 3.5), we find that beneficial mutations with
comparable selective effect to the deleterious mutation (sb ≈ 1%)
will be subject to staggered phases within the majority of the ge-
nome (∼ 65% of coding genes). This is interesting in light of a
number of experimental evolutions in small populations of Dro-
sophila (N ≈ 102−103), where studies have often shown a number
of alleles that initially increase in frequency with a rate and di-
rection suggestive of selection but then do not finish the sweep
to fixation (59, 60) [older experiments also exhibited similar pat-
terns (61–65)]. Possible explanations [including individually over-
dominant loci or selection on polygenic traits (66)] are still under
investigation; however, it is plausible that this behavior could in
part be due to linked recessive deleterious alleles in small pop-
ulations causing staggered sweeps.
For humans, there are no current estimates for the densities of

weakly deleterious recessive mutations; however, if we consider a
range of densities from 1 mildly deleterious mutation every 10
coding genes to every 100 coding genes, we find that anywhere
from 3% to 30% of coding genes may be subject to a reduced
rate of adaptation (Table 1). This result strongly emphasizes the
need for more information regarding the actual numbers of
weakly deleterious recessive mutations segregating in human
populations, as their combined effect could potentially result in a
significantly suppressed rate of fixation of weakly adaptive mu-
tations, particularly in small populations. We note that in clas-
sical population genetics, the term Nsb > 1 is generally required
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Fig. 4. Analytics predict simulation results for the mean sweep time of
staggered sweeps. The y axis is the fold increase in the beneficial mutation’s
sweep time relative to a one-locus control with no hitchhiker, and the x axis
is the base pair distance between the linked sites. The population size (N)
used in each panel is indicated by the figure row headings, and the bene-
ficial mutation effect size (sb) used in each panel is indicated by the figure
column headings, such that A and B have α ≤ 1, and C–F have α > 1. Points
represent results of 500 simulations in which fixation of the beneficial mu-
tation occurred (required to calculate its sweep time), where bars indicate
±SE and solid lines indicate our analytic predictions (A and B have α< 1 and
thus no increase in sweep time; C−F have α> 1 and thus use Eq. 13). Red
dashed lines are analytic predictions for the distance le at which the mean
sweep time becomes extended (Eq. S35 and SI Text, section 3.2). For more
discussion of the leveling off of sweep times at low recombination rates in C
and D, see SI Text, section 4.5. All simulations used sd =−0.1. We have
translated recombination rate r × l between the sites into base pair distance
using a human recombination rate per base pair per generation r =10−8.
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to be satisfied for adaptation to proceed. However, in a pop-
ulation with densely distributed recessive mutations, the re-
quirement becomes Ns2b=sd > 1, a factor sb=sd smaller. If genomes
are indeed rich in recessive deleterious variation, it may be the
case that beneficial mutations must have substantially larger
fitness effects (sb >

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
instead of sb > 1=N) to spread through

a population.

Altered Signatures of Selection. A beneficial mutation that begins
its selective sweep with a linked recessive deleterious hitchhiker
may be expected to leave an altered genomic signature of selection
upon reaching fixation compared with a hard sweep. Under the
classic hard sweep model of adaptation, a single de novo adaptive
mutation occurs on a single haplotype and drives it to fixation. As
a result, diversity in the immediate vicinity of the adaptive site is
expected to be greatly reduced at the completion of the sweep and
should recover to background levels farther away in the genome
(67). In contrast, during a successful staggered sweep in which
recombination must unlink a recessive deleterious hitchhiker, the
haplotype that begins the sweep will always be distinct from the
haplotype that finishes the sweep. It is thus possible in this sce-
nario for both haplotypes to persist in the population after fixation
occurs, producing higher levels of haplotype diversity around the
beneficial mutation.
To illustrate this point, we simulated staggered sweeps, hard

sweeps, and soft sweeps with linked neutral diversity using SLiM,
a program for forward population genetic simulations of linked
loci (68) (soft sweep simulations used a high beneficial mutation
rate, such that beneficial mutations occurred on multiple hap-
lotypes and swept concurrently). Upon fixation of the beneficial
mutation, we plotted patterns of heterozygosity around the
adaptive site, and found that staggered sweeps leave distinct
signatures (Fig. 5; additional statistics in SI Text, section 5). At
the conclusion of a staggered sweep, there can be multiple
haplotypes present in the population at substantial frequencies
(Fig. 5 A vs. B), a signature that is qualitatively similar to that
generated by a soft or partial sweep. Additionally, compared with
both hard and soft sweeps, staggered sweeps consistently leave
higher levels of heterozygosity above the region where the re-
cessive deleterious hitchhiker was unlinked (Fig. 5C). This
asymmetry is caused by the requirement that, in order for fixa-
tion to occur, at least two haplotypes must participate in the
selective sweep on the side of the beneficial mutation that con-

tained the deleterious hitchhiker. These staggered sweep signa-
tures are interesting in light of the many studies that have found
partial sweeps (69–71), a signature characterized by a single bene-
ficial mutation (or haplotype, if the mutation is not yet identified)
that has spread through a population but not yet reached fixation.
Our model suggests that linked recessive deleterious variation could
potentially be another factor contributing to such signatures ob-
served in natural populations.

Possible Extensions to Our Model. Our model is unique in that our
assumption of recessivity allows for the consideration of dele-
terious mutations with appreciable selective effects, a class of
deleterious mutations that are observed in natural populations
and yet are generally precluded from hitchhiking models that
assume codominance (due to sd > sb). Thus, for a deleterious
mutation with a given effect size sd, a linked beneficial mutation
should have a higher probability of fixation if that deleterious
hitchhiker is recessive. This is due to the fact that the BD hap-
lotype can potentially establish (as in the α> 1 regime) or drift at
low frequencies (as in the α< 1 regime), which, in either case,
allows the beneficial mutation to persist for longer times in the
population (and thus have more chances at escape) than if its
hitchhiker had codominant effects. One possible extension would
be to require the deleterious mutation to be weaker (sd � sb),
which would not cause temporary balancing selection, as in our
model, but may allow the beneficial mutation on the BD hap-
lotype to initially establish with a higher probability than if the
hitchhiker had codominant effects (i.e., ∼ sb instead of ∼ sb − sd).
Another interesting extension would be to build a model with an
arbitrary number, n, of deleterious sites, in which the deleterious
effect is correlated with the dominance coefficient. This would
better reflect what is observed in nature, and additionally would
allow for the interesting case where many neighboring weakly
deleterious recessive mutations can cumulatively cause a bal-
anced state (if nsd > sb), and which would also require longer
timescales to be unlinked. In general, the ability of recessive
deleterious mutations to hitchhike to appreciable frequencies
suggests they could play a role in the dynamics of rapid adap-
tation and potentially in the maintenance of genetic variation.
Our model of a single beneficial and deleterious mutation is
appropriate if mutation rates are small (i.e., Nμ � 1). An in-
teresting extension would thus be to incorporate arbitrary rates
of beneficial and deleterious mutations (similar to ref. 30),

Table 1. Estimates of the the proportion of the genome in which the probability of fixation of the beneficial mutation is decreased for
Drosophila melanogaster and humans

Organism
Number of

coding genes

Recessive
deleterious
effect (sd), %

Zone of reduced
adaptation

[genes in zone]
Beneficial effect
(sb) impacted, %

Density
of recessive
deleterious

Proportion of
adaptive mutations

impacted, %

Drosophila
(wild, N = 106)

∼12,000 100 100 kb [20 genes] ≤0.10 1/(genome) ∼0.1
1 10 kb [3 genes] ≤0.01 1/(30 genes) ∼10

Drosophila
(laboratory, N = 103)

∼12,000 100 3 Mb [400 genes] ≤3.00 1/(genome) ∼3
1 300 kb [40 genes] ≤0.30 1/(30 genes) ∼100

Human (N = 104) ∼20,000 100 1 Mb [20 genes] ≤1.00 1/(genome) ∼0.1
1 100 kb [3 genes] ≤0.10 1/(100 genes) ∼3

1/(30 genes) ∼10
1/(10 genes) ∼30

Due to variation in functional density across genomes and organisms, we frame our estimates in terms of coding genes and their densities, using the
Drosophila and human reference genomes (SI Text, section 3). Column information is as follows: column 1 indicates the species and population size
considered, column 2 indicates the number of coding genes in a haploid set of autosomes, column 3 indicates the recessive deleterious mutation effect size
of interest, column 4 indicates the zone around this recessive deleterious mutation within which adaptation is suppressed (SI Text, sections 3.1 and 3.2), where
the bracketed information is the number of coding genes that typically appear in a region of this size (centered on a coding gene, SI Text, section 3.3), column
5 indicates the beneficial mutation effect size of interest (where we consider all beneficial mutations which fall within the α< 1 regime because they behave
similarly and are greatly impacted), column 6 indicates the densities of recessive deleterious mutations as obtained from refs. 20, 24, and 54, where we use a range
of possible densities for mildly deleterious mutations in humans due to a lack of information, and column 7 indicates the proportion of new adaptive mutations
of the given effect size impacted (i.e., the proportion of coding genes in a genome within which adaptation is suppressed), which can be substantial.
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allowing for beneficial mutations to be so frequent that when
a new adaptive event occurs the effects of the previous one
may not have yet been “forgotten.”

Conclusions. Studies of linkage interference due to deleterious
hitchhikers have largely been concerned with mutations of weak
effects, as these are able to hitchhike to fixation with a beneficial
mutation of larger effect. However, we have shown here that
recessive mutations, which behave like weakly deleterious mu-
tations at low frequencies but like strongly deleterious mutations
at high frequencies, can significantly interfere with the rate and
dynamics of adaptation. We find that a single recessive delete-
rious mutation will inhibit adaptation for large genomic distances
around itself, and linked adaptive mutations sweeping through a
population may stagger at an intermediate frequency for an ex-
tended time before reaching fixation. The consequences of re-
cessive deleterious variation for adaptation are amplified in

small populations, for closely linked sites, for weakly adaptive
events, and for populations that harbor substantial recessive
deleterious load. Although definitive experimental data for stag-
gered sweeps are yet to be acquired, the evidence for abundant
recessive deleterious variation from both natural populations (in-
breeding depression data) and de novo mutations (mutation ac-
cumulation and mutagenesis experiments) suggests that staggered
sweeps may be important during adaptation.
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Fig. 5. Altered signatures of selection in the genome after a staggered sweep. Simulations were performed using SliM (68) to generate and track neutral
diversity around the adaptive site, where simulations used sb =0.05 and N = 1,000 diploids. (A) Haplotypes present in a population at the conclusion of
single simulation of a hard sweep in which a beneficial mutation on a haplotype containing only neutral mutations was seeded at establishment frequency;
note that a single haplotype dominates the population. (B) Haplotypes present in a population at the conclusion of single simulation of a staggered sweep
in which a beneficial mutation on a haplotype containing both neutral mutations and a single recessive deleterious mutation (sd = 0.05) 10 kb away (where
r = 10−8) was seeded at establishment frequency. Note that recombination has unlinked the beneficial and recessive deleterious mutations, such that
multiple haplotypes are at high frequency in the population after fixation of the beneficial mutation. (C) Mean heterozygosity across 200 simulations
calculated in sliding windows of length 30 kb with step size 10 kb, where the ribbon around data points indicates the SEM. Results are plotted for hard
sweep simulations in which a new adaptive mutation occurs on a single haplotype, soft sweep simulations in which a new adaptive mutation occurs on
multiple haplotypes (Nub ≈ 1), and staggered sweep simulations in which an adaptive mutation occurs on a single haplotype background containing a
recessive deleterious mutation (sd = 0.05).
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1. Balancing Selection for Arbitrary Dominance and
Selection Coefficients
For arbitrary dominance the fitnesses of the diploids in the
population are

wOO=OO = 1 [S1]

wBD=OO = ð1+ hbsbÞð1− hdsdÞ= 1+ hbsb − hdsd − hbsbhdsd [S2]

wBD=BD = ð1+ sbÞð1− sdÞ= 1+ sb − sd − sbsd. [S3]

The change in frequency of a BD haplotype at frequency pt at
time t due to selection can be derived,

pt+1 = p2t log
�
wBD=BD

wpop

�
+ ptqtlog

�
wBD=OO

wpop

�
. [S4]

Using a series expansion in p and taking the continuous time
limit, this becomes a differential equation describing the dynam-
ics of the frequency of the BD haplotype, p, due to selection

SðpÞ= ðhbsb − hdsdÞp+ ðsb − 3hbsb − sd + 3hdsdÞp2
+ ð−sb + 2hbsb + sd − 2hdsdÞp3, [S5]

which is valid for small p, although also qualitatively correct for p∼ 1.
We can approximate Eq. S5 with the assumption sb � sd � 1,

giving

SðpÞ≈ sbp− sdp2 + sdp3. [S6]

The first term reflects selection on heterozygotes with fitness ∼sb
that occur with probability ∼p, the second term reflects selection
on homozygotes with fitness ∼−sb that occur with probability
∼p2, and the third term comes from a decrease in population
mean fitness at higher frequencies of BD. This cubic equation is
the origin of the shape of the selection curve in Fig. 2. Because
pp � 1 when sb � sd, the cubic term can be ignored as it is smaller
than the other terms by a factor of ∼ pp. The cubic term, however, is
important if one enters a regime in which Nsd K 1; however, this
regime is not considered in the paper as it is biologically implausible
for most populations.
If we wish to use Eq. S5 to derive an equilibrium frequency for

arbitrary dominance and selection coefficients, we find

pp =
hdsd − hbsb + hbsbhdsd

sb − 2hbsb − sd + 2hdsd − sbsd + 2hbsbhdsd
. [S7]

2. Drift to Extinction from Equilibrium No Recombination
2.1. Strong Selection, Weak Drift Regime (α> 1). In the absence of
recombination, the rate of extinction depends on two things: the
strength of selection [SðpÞ] pushing the BD haplotype toward
equilibrium p*, and the variance in frequency due to drift [DðpÞ]
that enables the BD haplotype to fluctuate to extinction against
selection. Under these two effects, the frequency of the BD
haplotype, p, is governed by the stochastic equation

δp≈ SðpÞδt+ η
ffiffiffiffiffiffiffiffi
Dδt

p
[S8]

with SðpÞ≈ sbp− sdp2 + sdp3 and where DðpÞ= pð1− pÞ=N is the
variance from drift and η is Gaussian distributed noise with zero
mean and unit variance. In the long time limit, the probability
density ρðpjt, p0Þ generated by Eq. S8, which describes the likeli-
hood of observing a BD haplotype at frequency p after time t,
given that it started at p0, has weights at p= 0 and p= 1 only
(which must sum to unity). What this means for the BD haplo-
type is that after a long enough time, it must eventually fluctuate
to extinction or fixation. In our particular case, because sb � sd,
the probability of fluctuating to extinction is far larger than that
of fluctuating to fixation.
Before this time, however, the probability density must move

from being concentrated at p= p0 (where it all started) to being
concentrated at p= 0 (extinction). We want to estimate how quickly
this process happens. Consider starting all of the probability density
at p= pp. Initially, this probability density spreads out a small
amount around pp, due to drift. However, because of strong
selection, it remains sharply peaked around p= pp and reaches a
selection−drift steady state: Its shape does not change, but it
begins to decay (i.e., its amplitude decays) at some characteristic
rate λ such that ρðpjt, p0Þ≈ expð−λtÞ. The rate, λ, is small because
we are in the limit of strong selection, and fluctuating to ex-
tinction is improbable. Our goal here is to estimate λ, which
determines the rate at which BD haplotypes go extinct.
To do this, we consider the stochastic equation for δp from Eq.

S8. For changes in frequency δp such that δp=p � 1, both SðpÞ
(selection) and DðpÞ (drift) can be assumed to be constant, and
Eq. S8 reduces exactly to standard diffusion. The solution for
probability density in this case is therefore a Gaussian over δp,

ρðδpjtÞdðδpÞ= dðδpÞffiffiffiffiffiffiffiffiffiffi
2πDt

p exp

"
−
ðδp− StÞ2

2Dt

#
. [S9]

This makes sense: The mean change in frequency is St, which is
the change that would have been expected without drift, whereas
the variance around this grows linearly in time Dt, with a co-
efficient that is exactly the variance introduced by the drift term.
Multiplying out the quadratic and exponentiating the constant
out front, this can be written as

ρðδpjtÞ= 1ffiffiffiffiffi
2π

p exp
�
β−

β

2

�t
τ
+
τ

t

�
−
lnðt=βτÞ

2

�
[S10]

where

τ=
δp
S

and β=
Sδp
D

. [S11]

Writing the density in this way is particularly useful because one
can straightforwardly see when selection dominates or when drift
dominates. The parameter β determines which of the two is most
important: when jβj � 1, selection dominates, whereas for jβj � 1,
drift dominates. One way of interpreting β is as a ratio of two
timescales,

β=
time  for  drift  to  change  frequency  by  δp

time  or  selection  to  change  frequency  by  δp

=

	
δp2


D
�

ðδp=SÞ =
Sδp
D

. [S12]
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If the timescale for selection to change the frequency by δp is
much faster than that for drift (large β), then selection drives the
dynamics. The reverse is true for small β in which drift drives the
dynamics. Focusing on the case of strong selection and consid-
ering Eq. S10, one can see that when β � 1, the lnðt=βτÞ term is
small compared with the other two; thus it can be ignored. The
log density then becomes

ln  ρðδpjtÞ≈ β−
β

2

�t
τ
+
τ

t

�
. [S13]

In our specific case, we are interested in the BD haplotype fluc-
tuating from p= pp to p= 0 (i.e., negative δp) in the presence of a
positive selection (S) pushing the BD haplotype upward toward
p= pp. This means that we are interested in the case of δp< 0 and
S> 0. Considering the expressions for τ and β, one can see that
such a case corresponds to both β< 0 and τ< 0. One can see from
Eq. S13 that the probability density is sharply peaked at t= jτj,
regardless of the sign of β. This somewhat counterintuitive result
means the following: When selection is strong (jβj � 1), if the
BD haplotype moves against the flow of selection, driven purely
by fluctuations, then the path it takes will be similar to the path it
would have taken if it had moved with the flow of selection [a
result similar to that found by Maruyama (1)]. The key thing to
note, however, is that when selection is strong, then the BD
haplotype is very unlikely to fluctuate against the flow of selection.
To quantify just how unlikely this is, we remember that in the

rare cases where movement occurs against the flow, then the most
probable paths are close to a time t= jτj. Therefore, the proba-
bility of changing in frequency δp in the direction opposite of v (i.e.,
β negative) is obtained by substituting this time into Eq. S13, giving

Prðmoving  by  δp  against  vÞ≈ expð−2jβjÞ. [S14]

The above probability result assumed that S and D were
constant over a small interval δp. To calculate the probability of
fluctuating over the entire selective barrier SðpÞ to extinction,
one must therefore take the product of the probabilities of many
such jumps, each with its own βðpÞ. This product gives an integral
in the exponent

Pðpp → 0Þ≈ exp

"
2
Z0

p p

dp
SðpÞ
DðpÞ

#
. [S15]

In our specific case,

SðpÞ≈ sbp− sdp2 [S16]

DðpÞ≈ p=N [S17]

pp ≈ sb=sd. [S18]

The integral can be solved exactly giving

Pðpp → 0Þ≈ exp
�
−
Ns2b
sd

�
. [S19]

This result has the rather simple interpretation that what primar-
ily determines the probability is the barrier height. Evaluating the
strength of selection and noise at this highest point and multiply-
ing by the distance it has to move, pp, also gives exactly the above
result. The parameter

α≡Ns2b


sd [S20]

is therefore particularly important in the dynamics because it
alone determines the probability of fluctuating to extinction

Pðpp → 0Þ≈A exp½−Bα� [S21]

with A and B constants Oð1Þ.
At present, we have calculated the probability of fluctuating to

extinction. To translate this into an estimate for the rate of decay,
λ, we must remember that in deriving the above result for the
probability, we used the fact that each of the small jumps in
frequency δp that the BD haplotype takes to reach p= 0 lasts a
time τ= δp=S. We can therefore calculate how long it takes for
that probability to decay by adding up all of the τ on its journey
from p= pp to p= 0. However, our calculation must only include
the region where β> 1 (i.e., where selection dominates). There-
fore, the frequency limits in the integral are not p= pp and p= 0
but rather p= pp − 1=Nsb to p= 1=Nsb, because these define the
region of the barrier where β> 1 (see Fig. 2A). Therefore

time  to  extinction=
Z1=Nsb

p p−1=Nsb

dp
SðpÞ=

Z1=Nsb

p p−1=Nsb

dp
sbp− sdp2

[S22]

This integral will be dominated by where the flow of selection is
slowest, which is the start and the finish. Because of the symmetry
of the quadratic around the point p= pp=2, we can integrate from
1=Nsb to pp=2 and then double the result. We can also realize
that because p � 1 the quadratic term can be ignored, giving

time  to  extinction≈ 2
Zp p=2

1=Nsb

dp
sbp

=
2
sb
ln

 
Nsbp*

2

!
≈
2
sb
lnðαÞ. [S23]

This result again makes sense: This time is exactly the character-
istic time it would have taken the BD haplotype to rise from 1=Nsb
to pp, were it to have done so deterministically under the influ-
ence of selection alone. Approximating the rate is now straight-
forward: Given that an amount of probability expð−Ns2b=sdÞ is
lost in an amount of time ∼ 1=sb lnðαÞ, it means the rate of decay,
λ, must be approximately given by

λl ≈
e−α

ð1=sbÞlnðαÞ, [S24]

which is the result quoted Eq. 10 of the main text, such that
mean time to extinction τl ≈ 1=λl, and which agrees very well with
the simulations described in SI Text, section 4. We verify the
slightly counterintuitive dependence of λ on sb by performing
105 simulations at various sb but at fixed α in Fig. S3J, as well as
for various N, sb, and sd without fixing α (Fig. S3 A−I).

2.2. A Note on α for Arbitrary Dominance Coefficients. For the case
of arbitrary dominance coefficients (hb ≠ 1, hd ≠ 0), a relatively
straightforward extension can be made to our model by changing
α to reflect the fitness of heterozygotes (i.e., replace sb with
hbsb − hdsd). In this case, our approximations will hold as long
as there is still heterozygote advantage, or, in other words,
hbsb > hdsd and hbsb − hdsd < sd. Thus, α becomes

α≈N
ðhbsb − hdsdÞ2

sd
, [S25]

which will still predict the rate of loss. However, note that in the
rate of escape quoted in the main paper,

Assaf et al. www.pnas.org/cgi/content/short/1424949112 2 of 16

www.pnas.org/cgi/content/short/1424949112


λe ≈ rlNsb
sb
sd
≈ rlα, [S26]

the first sb value comes from the probability of establishment for
a new BO recombinant haplotype, and the second sb value comes
from the equilibrium frequency pp. Thus, for arbitrary domi-
nance, the probability of escape becomes

λe ≈ rlNsb
hbsb − hdsd

sd
. [S27]

2.3. Strong Drift, Weak Selection Regime (α< 1). When α< 1, there
is no region below pp in which selection dominates over drift.
However, there is a region above pp where selection will domi-
nate over drift. This will occur when the strength of selection
[SðpÞ= sbp− sdp2] approximately matches the strength of drift
(∼ ± 1=N). Because this occurs above pp, the dominant term in
SðpÞ is the quadratic term, so the balance between selection and
drift is a balance involving selection against the homozygotes,

−sdp2 ≈±1=N p≈
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
. [S28]

This means that when the BD haplotype is below the frequency offfiffiffiffiffiffiffiffiffiffiffi
N=sd

p
, its dynamics are governed by drift, i.e., are largely neutral.

Under neutrality, the cumulative probability that a lineage which
started at one copy (no = 1) has gone extinct (n= 0) by time t is

Pr½n= 0jt�≈ e−no=t ≈ e−1=t ≈ 1− 1=t. [S29]

Thus, the probability that a neutral lineage goes extinct in an in-
terval dt near t is ∼ dt=t2, giving a distribution of extinction times
that are power law distributed as ∼ 1=t2.
The distribution of extinction times of the BD haplotype in the

α< 1 regime is expected to follow this neutral power-law distri-
bution, but with a cutoff at t≈

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
(due to the BD haplotype

being unable to drift to high frequencies where the recessive
deleterious mutation is exposed). The fact that the maximum
time a BD haplotype can remain in the population in this regime
is t≈

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
, which is the same as the maximum frequency it can

reach before selection against the homozygotes pushes it down in
frequency, is no accident. They are the same because, under
neutrality, the number of generations it takes to change by order
n is t≈ n. We verify this in the simulations section (section 4.3).
Recalling that the total probability of an escape event by time t is

probability  of   escape≈ rlsbN
Z t

0

p
	
t′
�
dt′ [S30]

(which is valid for a probability of escape � 1). Also recall that,
as we just showed and as quoted in Predictions for the Regime of
Weak Selection and Strong Drift (α � 1), in an interval dt, there
is a fraction ∼ dt=t2 of BD haplotypes that go extinct and a fraction
∼ rlsbt2 of BO haplotypes that escape via recombination, giving a
probability of escape ∼ rlsb   dt that is constant in time as long as
the BD haplotypes persist. Thus, the probability of fixation in
this α � 1 regime is

probability  of   fixation≈ rlsb

ZffiffiffiffiffiffiffiffiN=sd
p

0

dt′= rlsb
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
[S31]

where the upper limit in the integral comes from the fact that it is
unlikely for the BD haplotype to drift for longer than ∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
generations.

3. Zones of Altered Adaptation
3.1. Strong Selection, Weak Drift (α> 1).
Zone of suppressed probability of fixation. In this regime, the proba-
bility that a BD haplotype fixes can be significantly reduced
relative to the equivalent beneficial mutation with no deleterious
hitchhiker, but only if it is likely to fluctuate to extinction before
escape can occur. This means that τl < τe. Using the expressions
for these times from Eqs. 10 and 11 in the main text, the condition
for the fixation probability to be significantly reduces becomes

ln½α�
sb

eα � 1=rlα. [S32]

Rearranging this equation defines a base pair distance, ll, around
a recessive deleterious mutation within which the probability of
fixation of beneficial mutations is reduced relative to the case of
no hitchhiker,

ll =
sb

rα ln½α� e
−α. [S33]

Zone of increased sweep time. Even if a beneficial mutation is not
driven to extinction, the duration of a beneficial mutation’s sweep
to fixation can be substantially extended if it’s genetically linked
to a recessive deleterious hitchhiker. To understand when this
occurs, consider that the total time of a successful sweep will be
prolonged by the time it takes for an escape event to occur,

average  sweep  time≈
ln½Nsb�

sb
+
�
1
τe
+
1
τl

�−1

. [S34]

The first term corresponds to the sweep time for a single adaptive
mutation with no hitchhiker, and the second term comes from condi-
tioning on fixation such that the extension in sweep time is determined
by the minimum of τe or τl. Typically, a sweep will be significantly
extended provided the additional time minðτe, τlÞ � ln½Nsb�=sb. Us-
ing the expressions for τe and τl from Eqs. 10 and 11 in the main text
and rearranging, we can again cast this in terms of a base pair distance,

le =
sb

rα  ln½Nsb�, [S35]

which is the distance to a recessive deleterious mutation within
which a new beneficial mutation must land to have its sweep time
significantly extended.

3.2. Strong Drift, Weak Selection (α< 1).
Zone of suppressed probability of fixation. The probability of fixation
in this regime, from Eq. 6 and Predictions for the Regime of Weak
Selection and Strong Drift (α � 1), is

PrðfixationÞ≈ rlsb

ZffiffiffiffiffiffiffiffiN=sd
p

0

dt= rlsb
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
, [S36]

where the upper limit in the integral comes from the fact that it
is highly unlikely for a BD haplotype to drift for longer than
∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
generations. Compared with a beneficial mutation with

no hitchhikers (where probability of fixation is ∼ sb), a recessive
deleterious hitchhiker will significantly suppress the probability
of fixation whenever rl

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
< 1. This can be used to define a

base pair distance, ll, around any recessive deleterious mutation
within which a new beneficial mutation of effect size ∼ sb (or
smaller) has a reduced chance of fixation,

ll =
1
r

ffiffiffiffi
sd
N

r
. [S37]
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Zone of increased sweep time. In this regime, there can be no sig-
nificant increase in sweep time, because the loss time is always
small relative to the sweep time.

3.3. Quantifying Coding Gene Density for Drosophila melanogaster
and Humans. Given that deleterious regions are likely to occur
in functional regions, and that functional regions are likely to be
clustered in the genome (particularly for humans), we framed our
estimates of functional density in terms of the density of coding
genes around every coding gene. For this analysis in humans, we
downloaded the University of California, Santa Cruz (UCSC)
knownCanonical table of genes and their corresponding posi-
tions, where each gene is only represented by one isoform, and the
set of gene predictions are “based on data from RefSeq, Gen-
Bank, Rfam, and the tRNA Genes track. . .This is a moderately
conservative set of predictions” (UCSC website, genome.ucsc.
edu/cgi-bin/hgTables). We then excluded all genes that do not
appear in the knownGenePep list (i.e., excluded noncoding) and
excluded all genes that are not located on autosomes. Then,
using the annotated locations of all genes in this set, we quan-
tified the number of coding genes that fall within a window
centered around the midpoint of every coding gene, where the
window sizes were defined by our zone sizes. Note that this
means, for example, we had 19,353 data points for coding gene
densities because there are currently 19,353 coding genes an-
notated on the human autosomes. Results can be seen in Fig. S1
A and B.
We did a similar analysis forDrosophila, where we downloaded

from flybase.org the dmel-all-gene- list, excluded all genes that
do not appear on chromosomes 2 or 3, excluded all genes that do
not appear in the dmel-all-translation- list (i.e., excluded non-
coding), and only used the first isoform listed for every gene (i.e.,
if multiple isoforms were present, we used the -PA isoform).
Then, using the annotated locations of all genes in this set, we
quantified the number of coding genes that fall within a window
centered around the midpoint of every coding gene. In this case,
for Drosophila, there are currently 11,631 annotated coding genes
on chromosomes 2 and 3. Results can be seen in Fig. S1 C−F.

3.4. Estimates for Drosophila melanogaster and Humans for the
Proportion of the Genome in Which the Fixation Probability of
Beneficial Mutations Is Reduced. Table 1 gives predictions for the
proportion of coding genes in the Drosophila and human ge-
nomes that are subject to reduced fixation probabilities for new
beneficial mutations. These predictions are based on coding
gene densities (described in section 3.3) and the predicted zone
size around the deleterious mutations (described in sections 3.1
and 3.2). Because this zone is maximized in the α=Ns2b=sd ≤ 1
regime, we used a zone size of ll =

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
=r. Note that this is

independent of the beneficial mutation effect size, and thus all
beneficial mutations that satisfy sb ≤

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
behave similarly,

emphasizing that weakly adaptive mutations may be particularly
susceptible to the effects of hidden recessive deleterious varia-
tion in the genome. Details of how we constructed Table 1 are
found below. Method for Table 1:

Column 1= Organism and assumed population size

Column 2= Number of coding genes on autosomes, see sec-
tion 3.3

Column 3= Recessive deleterious effect size of interest

Column 4= ll   for  α< 1=
ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
=r

where brackets indicate number of genes which appear in this
zone, given by section 3.3

Column 5= the zone size is the same for all sb ≤
ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
Column 6= nd=gc   where

nd = number of recessive deleterious mutations in a haploid
set of autosomes (2−4)
gc = number of coding genes in reference genome

Column 7= column 4 brackets × column 6.

3.5. Estimates for Drosophila melanogaster and Humans for the
Proportion of the Genome in Which the Sweep Time of Beneficial
Mutations Is Extended. If we consider the beneficial mutations
that do reach fixation, we find that a substantial proportion of the
human and Drosophila genomes will cause there to be a stag-
gered phase during the beneficial mutation’s selective sweep,
particularly due to more mildly deleterious recessive mutations
(Table S1). Although the impact of recessive deleterious varia-
tion on the probability of fixation of beneficial mutations can be
simplified in terms of which mutations fall within the α=
Ns2b=sd < 1 regime, the potential for extended sweep times is not
as easily simplified. Extensions in sweep times do not occur in
the α< 1 regime; instead, genomes will be most affected by stag-
gered sweeps for intermediate values of α. In this regime, the
adaptive mutation can reach a stable equilibrium frequency (α≮1)
where it has a slow rate of loss (τl > ln½Nsb�=sb), but the rate of new
recombinants being generated in the population is not so large
that the staggered sweep is resolved quickly (τe > ln½Nsb�=sb). One
example where this regime likely applies is experimental evolu-
tions (in obligately sexual diploids, like fruit flies), where the
beneficial effect sizes may be strong but the population size is
small. For example, in a population of N = 1,000 flies, a beneficial
mutation with effect size sb = 1%will be subject to staggered sweep
phases within ∼65% of coding genes.
To give a better sense of the parameter range affected, see Fig. S1

G–I, where G and H are for more mildly deleterious mutations
(which can affect substantial portions of the genome), and I is for
recessive lethals (which do not have a substantial effect). Experi-
mental evolutions inDrosophila correspond to blue and purple lines
in Fig. S1 G−I. Details of how these plots were constructed can be
found below. Note that the plots are stepwise due to the mea-
surements of the clustering of genes (zone size is rounded to the
nearest order of magnitude and translated to the mean number of
genes within that distance; see section 3.3). Method for Table S1:

Column 1= Organism and assumed population size

Column 2= Number of coding genes on autosomes, see sec-
tion 3.3

Column 3= Recessive deleterious effect size of interest

Column 4=
sb

rα  ln½Nsb�
where brackets indicate number of genes which appear in this
zone, given by section 3.3

Column 5= Beneficial effect size of interest

Column 6= nd=gc   where

nd = number of recessive deleterious mutations in a haploid
set of autosomes (2−4)
gc = number of coding genes in reference genome

Column 7= column 4 brackets × column 6.

Our method for plots in Fig. S1 G–I was as follows: For Fig. S1
G−I, the y axis is count × density. Count denotes the number of
genes that appear in region le (see section 3.3); le = sb=rαln½Nsb�,
where r = 10−8 and α=Ns2b=sd. Density is 1/30 for sd = 0.01,
1/12,000 for dmel sd = 1, and 1/20,000 for human sd = 1. The x axis
is sb, where minimum sb is set by α=Ns2b=sd, due to moving into
the α< 1 regime where no substantial extension in sweep time
occurs, and maximum sb is set by sd, due to the beneficial mu-
tation being stronger than the deleterious mutation.
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4. Simulations
Two-locus Wright−Fisher forward simulations of an adaptive
mutation genetically linked to a recessive deleterious mutation
were performed to test our predictions. A wide range of param-
eters were varied, including selection coefficients (sb = 0.001− 0.1,
sd = 0.01− 1), recombination rates (c= rl= 10−8 − 10−1), and dip-
loid population sizes (N = 102 − 106), corresponding to ranges of
α=Ns2b=sd = 10−3 − 105. All simulations used sb ≤ sd and hetero-
zygous effects of hd = 0 and hb = 0.5 such that the equilibrium
frequency pp ≈ sb=2sd ≤ 1=2. We also included a one-locus control
beneficial mutation (with no hitchhiker) for comparison. Diploid
fitness was calculated as multiplicative across loci (as in Eqs.
S1−S3). Simulations tracked frequencies of haplotypes (i.e.,
BD, OO, BO, DO), where each generation consisted of re-
combination and selection in diploids, and then drift of haplo-
types (i.e., multinomial sampling). Simulations concluded when
the beneficial mutation approached fixation or extinction (i.e.,
p � 1− 1=2N or p � 1=2N).

4.1. Extinction Times in the α> 1 Regime. These simulations seeded
the BD haplotype at frequency pp and the OO haplotype at fre-
quency 1− pp, used zero recombination rate, and then recorded
the generation of extinction of the beneficial mutation (i.e., the
BD haplotype). A range of parameters were used, and each
parameter set was performed for 1,000 simulations. Parameters
were chosen such that α=Ns2b=sd > 1,  Nsd > 1 and mean time to
extinction τl = 1=λl � ln½Nsb�=sb (to ensure extinction times are
not confounded with the time it typically takes to traverse from
pp to 0).
The extinction times are predicted to be exponentially dis-

tributed with rate

λl ≈
e−α

ð1=sbÞlnðαÞ [S38]

called the “rate of loss,” where

α=Ns2b


sd. [S39]

Results of a few sample parameter sets can be seen in Fig. S2, in
which both histograms of extinction times (Fig. S2 A−C) and QQ
plots of exponential quantiles (Fig. S2 D−F) highlight that the
extinction times indeed look to be exponentially distributed (with
our predicted rate parameter indicated in red).
To test whether the rate of loss λl ≈ expð−αÞ * ðsb=lnðαÞÞ from

Eq. S24 accurately captures the correct scaling, or more specif-
ically is truly exponential in the parameter α=Ns2b=sd, we per-
formed a series of simulations in which a rate of loss was inferred
from the distribution of extinction times using the R function
fitdistr (from the downloadable R statistics package “MASS”). If
λl is indeed exponential in α, then we would expect that if we hold
all parameters constant except one (thus changing α via a single
parameter), this observed rate of loss would behave such that

rate= exp½−α� p ðsb=ln½α�Þ [S40]

rate p ðln½α�=sbÞ= exp½−α� [S41]

ln½rate p ðln½α�=sbÞ�=−α. [S42]

This is shown in Fig. S3, where changing a single variable (either
N, sb, or sd) affects the observed rate of loss only via the parameter
α, indicating that λl accurately captures the scaling in the exponent.
The term λl will predict the scaling for the rate of loss but not its
exact form, so for comparison with simulations, we fit constants to a
subset of simulations [finding λl = 0.1 expð−0.3αÞpðsb=lnðαÞÞ] and

used these coefficients throughout the rest of our predictions
for the rate of loss, the probability of fixation, and the sweep
time in simulations.

4.2. Escape Times in the α> 1 Regime. These simulations seeded the
BD haplotype at frequency p* and the OO haplotype at frequency
1− p*, used nonzero recombination rates, and then recorded the
generation of fixation or extinction of the beneficial mutation. A
range of parameters were used, and each parameter set was
performed for 1,000 simulations. We tried to choose parameters
that satisfied α=Ns2b=sd � 1 such that drift to extinction should
not confound measurements of escape time. Furthermore, we
chose parameters to satisfy Nsd > 1 (such that BD does not drift
to fixation) and to satisfy τe = 1=λe � ln½Nsb�=sb (such that es-
cape times are not confounded with the time it typically takes to
traverse from p* to 1).
The escape times are predicted to be exponentially distributed

with rate

λe ≈ cα [S43]

called the “rate of escape,” where

α=Ns2b


sd. [S44]

Results of a few sample parameter sets can be seen in Fig. S4, in
which both histograms of escape times (Fig. S4 A−C) and QQ
plots of exponential quantiles (Fig. S4 D−F) highlight that the
escape times indeed look to be exponentially distributed (with
our predicted rate parameter indicated in red).
To test whether cα= cNs2b=sd captures the correct scaling for

the rate of escape, we performed a series of simulations in which
a rate of escape was inferred from the distribution of fixation
times using the R function fitdistr (from the library MASS). This
observed rate is expected to scale linearly in response to c,N, s2b
and 1=sd. This is shown in Fig. S5, where each plot has the results
from a series of simulations in which three parameters have fixed
values and one parameter varies (either N, sb, sd, or c). The term
λe will predict the scaling for the rate of escape but not its exact
form, so, for comparison with simulations, we fit a constant using a
subset of simulations (finding λe = 0.8cα), and used this coefficient
throughout the rest of our predictions for the rate of escape, the
probability of fixation, and the sweep time in simulations.

4.3. Extinction Times in the α< 1 Regime. To observe the extinction
times in the α< 1 regime, we performed 100,000 simulations
in the α< 1 regime (also requiring Nsd > 1 so there is selection
against the recessive deleterious mutation), seeding the BD
haplotype at frequency 1=2N and the OO haplotype at frequency
1− 1=2N, and then recording the generation of extinction. Re-
sults are shown in Fig. S6. One way to view a power law is to
plot the complementary cumulative distribution on a log−log
plot, such that lnðPr½T > t�Þ= lnðtÞ. The neutral expectation is
indicated by the black line, and the distribution of extinction
times for neutral simulations are shown in the light blue histo-
gram (note that it follows the neutral expectation, although finite
sampling leads to poorer resolution at the tip of the tail). The
distribution of extinction times from simulations in the α< 1
regime are shown in the dark blue, pink, and yellow histo-
grams, where they follow the neutral expectation up until a
cutoff time that scales with ∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
. The term

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
will

predict the scaling for the extinction time but not its exact
form, so, for comparison with simulations, we fit a constant to
a subset of simulations (finding 4

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
) and used this co-

efficient throughout the rest of our predictions for the loss
time when α< 1, the probability of fixation, and the sweep
time in simulations.
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4.4. Probability of Fixation of the Beneficial Mutation (Both α Regimes).
These simulations seeded the haplotype at frequency p= 1=2N
and the OO haplotype at frequency 1− 1=2N, used nonzero re-
combination rates, and then recorded the generation of fixation or
extinction of the beneficial mutation. A range of parameters were
used, and each parameter set was performed for 1,000/sb simula-
tions such that a one-locus control beneficial mutation (with no
deleterious hitchhiker) is expected to fix in ∼1,000 simulations.
For comparison with simulation results, we used the following

analytic predictions for the probability of fixation of a beneficial
mutation that enters a population on a BD haplotype:

PrðfixationÞ≈

8>>><
>>>:

�
1− e−sb

1− e−2Nsb

��
λe

λe + λl

��
1− e−ðλe+λlÞtmax

�
ðfor  α> 1Þ

�
1− e−sb

1− e−2Nsb

��
1− e−c4

ffiffiffiffiffiffiffiffi
N=sd

p �
ðfor  α< 1Þ

[S45]

where

λl ≈
sb

ln½α� e
−α ðfor  α> 1Þ [S46]

λe ≈ cα ðfor  α> 1Þ [S47]

α=
Ns2b
sd

  and  c= rl. [S48]

A full panel of simulation results with analytic predictions for the
probability of fixation can be seen in Fig. S7.
The first term in the probability of fixation in both regimes is

the probability of establishment, where we have replaced the
approximation sb with the more exact form 1− e−sb=1− e−2Nsb for
the sake of comparison with simulations (particularly important
for small population sizes). Note that in the α> 1 regime, the
third term is the probability that escape occurs before the
simulations end at time tmax (due to not being able to run
simulations for infinite generations). Simulations ran for, at
most, tmax = 109 generations.
A beneficial mutation of effect sb will have a decreased pro-

bability of fixation if it falls within a recombination distance cl of
the recessive deleterious mutation with effect sd in a population
of N. In the α> 1 regime, this is found by setting λl = λe, and
in the α< 1 regime, this is found by setting c= 1=

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
. For

comparison with simulations, we thus use the following analytic
predictions:

cl ≈

8><
>:

max
�

sb
rα ln½α�eα,  

1
α  tmax

�
ðfor  α> 1Þ

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p ðfor  α< 1Þ
. [S49]

These predictions for cl can be seen as the vertical dashed gray
lines in Fig. S7.

4.5. Sweep Time of the Beneficial Mutation (Both α Regimes). These
simulations seeded the BD haplotype at frequency p= 1=2N and
the OO haplotype at frequency 1− 1=2N, used nonzero recom-
bination rates, and then recorded the generation of fixation or
extinction of the beneficial mutation. A range of parameters
were used, and each parameter set was performed until 500 fixation
events occurred.
For comparison with simulation results, we used the following

analytic predictions for the sweep time of a beneficial mutation
that enters a population on a BD haplotype:

total  sweep  time≈

8>>>>><
>>>>>:

4 ln½2Nsb�
sb

+
�
1
τe
+
1
τl

�−1

ðfor  α> 1Þ

4 ln½2Nsb�
sb

+

 
1
τe
+

1

4
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
!−1

ðfor  α< 1Þ
.

[S50]

A full panel of simulation results can be seen in Fig. S8. Note that the
first term (in both regimes) has added factors of 2 that come from the
sweep time predictions for diploids. The second term (in both re-
gimes) is derived from the faster of two processes—either the es-
cape time (τe) or the loss time (τl for α> 1 and

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
for α< 1).

The sweep time will not be changed if ln½Nsb�=sb is larger than τe,
τl, or

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
. If ln½Nsb�=sb < τe < ðτl   k

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p Þ, then escape will
generally occur before extinction of the BD haplotype, and the
sweep will be extended by τe. If ln½Nsb�=sb < ðτl k

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p Þ< τe, then
loss occurs before escape; however, we are conditioning on fixation,
and thus, in the rare instances where the beneficial mutation does
reach fixation, it must do so in a time τl or

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
(depending on

the regime). For example, in Fig. 4 C and D, we have a case of
ln½Nsb�=sb < τl, and thus there is still an extension in the sweep time
(seen as the leveling off of sweep times at low recombination rates).
A beneficial mutation of effect sb will have an increased sweep

time if it falls within a recombination distance ce of the recessive
deleterious mutation with effect sd in a population of N. This can
be found by setting 1=λe = ln½Nsb�=sb; thus, for comparison with
simulations, we use the following analytic predictions:

ce =
sb

α ln½Nsb� ðfor  α> 1  and  α< 1Þ . [S51]

These predictions for ce can be seen as the vertical dashed red
lines in Fig. S8. Note that in the α< 1 regime, the sweep time is
not expected to be substantially altered, because, in this regime,
where α=Ns2b=sd < 1, the beneficial mutation must escape in a
time

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
, which is generally less than ln½Nsb�=sb.

4.6. Testing Robustness of Model if Deleterious Allele Segregating at
High Frequency. Our model predictions should be robust to cases
where the recessive deleterious allele is segregating on an OD
haplotype in many individuals in the population, because, in our
case of Nμd < 1, the deleterious mutation will typically reach, at
most,

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
copies, or a frequency of 1=

ffiffiffiffiffiffiffiffi
Nsd

p
. To understand

this, consider that the deleterious variation will reduce the mean
(log) fitness advantage of a new BD haplotype, due to causing
the BD haplotype to now appear in BD=OD diploids in addition
to appearing in BD=OO diploids,

wBD ≈ sb × ðfrequency  of  OOÞ+ ðsb − sdÞ× ðfrequency  of  ODÞ
[S52]

wBD ≈ sb

�
1−

1ffiffiffiffiffiffiffiffi
Nsd

p
�
+ ðsb − sdÞ

�
1ffiffiffiffiffiffiffiffi
Nsd

p
�

wBD ≈ sb −
sbffiffiffiffiffiffiffiffi
Nsd

p +
sbffiffiffiffiffiffiffiffi
Nsd

p − sd
1ffiffiffiffiffiffiffiffi
Nsd

p [S53]

wBD ≈ sb −
ffiffiffiffi
sd
N

r
. [S54]

Thus, the mean selective advantage of the BD haplotype can be
substantially reduced by segregating deleterious variation when
sb K

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
, which, interestingly, is when α=Ns2b=sd K 1. How-

ever, as we have shown, whenever α< 1, the selective advantage
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of the BD is irrelevant because the dynamics are determined by
drift and selection against the recessive deleterious allele. There-
fore, having multiple copies of an OD haplotype will not change
our results. We confirmed that our analytics still hold in such a
case, using simulations that seeded an OD haplotype at

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
copies when the BD haplotype appears.

5. Additional Signatures of Staggered Sweeps
Some additional statistics were calculated for the diversity around
a beneficial mutation that had a recessive deleterious hitchhiker

during its sweep to fixation (Fig. S9). Hard sweeps were simulated
by seeding a beneficial mutation with effect sb on a single hap-
lotype at establishment frequency, staggered sweeps by doing the
same but where the single haplotype also contained a recessive
deleterious mutation with effect sd a distance l away, and soft
sweeps by seeding the beneficial mutation on a new haplotype at
establishment frequency every t generations, where t was drawn
from an exponential distribution with rate sb (thus θ≈NUb = 1
beneficial mutation entering the population every generation
with an establishment probability of ∼ sb).
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Fig. S1. Histograms of the density of coding genes around every coding gene in the reference genomes of human and Drosophila (A−F) and predictions for
the proportion of coding genes affected in the Drosophila genome by staggered phases as a function of sb (G−I). (A and B) For humans, the number of coding
genes which appear in a (A) 100-kb and (B) 1-Mb window (respectively), where 19,353 windows, each centered on the midpoint of a coding gene, were used
(per window size). (C−F) For Drosophila, the number of coding genes that appear in a (C) 10-kb, (D) 100-kb, (E) 300-kb, and (F) 1-Mb window (respectively),
where 11,631 windows, each centered on the midpoint of a coding gene, were used (per window size). (G−I) Proportion of coding genes in the Drosophila
genome impacted by extended staggered phases due to deleterious mutations with effect sizes (G) 1%, (H) 5%, and (I) 100%, as a function of sb where the
minimum is set by when α= 1 and the maximum is set by sb = sd, and where each line indicates calculations for a different population size.
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Fig. S2. Histograms and QQ plots demonstrating that the extinction times in the α> 1 regime are exponentially distributed (a fuller set of simulation results
across parameter regimes can be seen in Fig. S3). A−C consist of histograms of extinction times from 1,000 simulations (the parameter set used is indicated in
the histogram title), such that the x axis is the extinction time t and the y axis is the frequency of events on a log scale. Note that if extinction times are indeed
exponentially distributed with rate λl, then we expect these histograms to be described by the line logðyÞ≈−λlx, which is indeed the case and can be seen by
the red line, which is an exponential density curve with the analytically predicted rate parameter λl. Note that short extinction times (1=λl = τl � ln½Nsb�=sb)
will not be exponentially distributed, sometimes causing an uptick in the distribution for extinction times near zero. D−F consist of the corresponding QQ plot
for each histogram above it, where the x axis is the theoretical quantiles for an exponential distribution with rate λl and the y axis is the sample quantiles
of extinction times obtained from simulations. The fact that the points lie along the straight line indicate that the extinction times are likely expo-
nentially distributed.
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Fig. S3. Testing whether the rate of loss is indeed exponential in the parameter α=Ns2b=sd, as described by Eq. S43. Each subplot contains results from a set of
simulations in which two parameters were held constant and one parameter varied; however, the observed rate of loss will be predicted through the pa-
rameter α (see Eq. S43). The rate of loss was inferred from 1,000 simulations, where an exponential distribution was fit to the extinction times using the R
function fitdistr from the package MASS. Parameter values used (for N, sb, sd, and always c= 0) are indicated in the heading of each subplot (with blank values
for the parameter varied, details for which are found in the gray text). For example, in A, each black data point indicates the results from 1,000 simulations in
which sb = 0.01 and sd = 0.05 and N is varied, such that the value of N used is indicated by the gray text with the corresponding α (written “a”) next to it. A−C

Legend continued on following page
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use fixed values of sb and sd (values indicated in headings) and varies N (values indicated in gray text), D−F use fixed N and sd and varied sb, and G−I use fixed N
and sb and varied sd. J verifies the sb dependence of λ by plotting the rate of decay λ at fixed α over a range of sb. These plots show that the rate of loss observed
in simulations is indeed exponential in α.

Fig. S4. Histograms and QQ plots demonstrating that the escape times in the α> 1 regime are exponentially distributed (a fuller set of simulation results across
parameter regimes can be seen in Fig. S5). A–C consist of histograms of escape times from 1,000 simulations, such that the x axis is the escape time t and the y
axis is the frequency of events on a log scale, and where the parameter set used is indicated in the histogram title such that A uses N = 25,000, sb = 0.01, sd =
0.05; B uses N = 200,000, sb = 0.005, sd = 0.01; and C uses N = 50,000, sb = 0.003, sd = 0.01. Note that if escape times are indeed exponentially distributed with
rate λe, then we expect these histograms to be described by the line logðyÞ≈−λex, which is indeed the case and can be seen by the red line, which is an
exponential density curve with the analytically predicted rate parameter λe. Note that short escape times (1=λe = τe � ln½Nsb�=sb) will not be exponentially
distributed, sometimes causing an uptick in the distribution for escape times near zero. D–F consist of the corresponding QQ plot for each histogram above it
(such that D uses the same variables as A, etc.), where the x axis is the theoretical quantiles for an exponential distribution with rate λe and the y axis is the
sample quantiles of escape times obtained from simulations. The fact that the points lie along the straight line indicate that the escape times are likely ex-
ponentially distributed.
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Fig. S5. Testing whether the rate of escape indeed scales with cα=Ns2b=sd. Each subplot contains results from a set of simulations in which three parameters
were held constant and one parameter varied, such that the observed rate of escape should scale with the varied parameter (as written on the x axis). Each
data point indicates the results from 1,000 simulations, where an exponential distribution was fit to the escape times using the R function fitdistr from
the package MASS and this inferred rate of escape recorded (y axis). Parameter values used (for N, sb, sd,c= 0) are indicated in the heading of each subplot
(with blank values for the parameter varied, details for which are found in the gray text). For example, in A, each black data point indicates the results from
1,000 simulations in which sb = 0.001, sd =0.01, c= 10−7, and N is varied across data points where the value of N used is indicated by the gray text with the

Legend continued on following page
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corresponding α (written “a”) next to it. A−D use fixed values of sb, sd, and c (values indicated in headings) and varied N (values indicated in gray text), D−F use
fixed values of N, sd, and c and varied sb, G−I use fixed values of N, sb, and sd and varied c, and J−L use fixed values of N, sb, and c and varied sd. These plots show
that the rate of escape scales with cα.
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Fig. S7. Probability of fixation (y axis) vs. the recombination rate c (x axis). These plots show the comparison of simulations to analytics, where each data point
is the result from 1,000/sb simulations, and the horizontal dashed line is the expectation for a single beneficial mutation with no deleterious hitchhiker. Note
that the population size N is indicated at the top of each column in a font color that corresponds to the color of the data points, the recessive deleterious effect
is sd = 0.1, and the beneficial mutation effect sb is indicated at the left side of each row in a font color that corresponds to the color of the plot axes. Gray
vertical dashed lines indicate the predicted crossover point cl, such that recombination distances below this have a substantially decreased probability of
fixation compared with a one-locus control beneficial mutation with no hitchhiker.
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Fig. S8. Sweep time (y axis) vs. the recombination rate c (x axis). These plots show the comparison of simulations to analytics, where each data point is the
result from 500 simulations in which fixation occurred, and the horizontal dashed line is the expectation for the sweep time of a single beneficial mutation
with no deleterious hitchhiker. Note that the population size N is indicated at the top of each column in a font color that corresponds to the color of the data
points, the recessive deleterious effect is sd = 0.1, and the beneficial mutation effect sb is indicated at the left side of each row in a font color that corresponds
to the color of the plot axes. Red vertical dashed lines indicate the predicted crossover point ce, such that recombination distances below this have an increased
sweep time compared with a one-locus control beneficial mutation with no hitchhiker.
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Fig. S9. Additional sweep signatures, averaged across 100 simulations using a diploid population size of N = 1,000 and a beneficial mutation effect size
sb = 0.05, where black lines indicate a hard sweep, blue lines indicate a soft sweep (Nμb = 1), red lines indicate a staggered sweep where sd = sb = 0.05, and
orange lines indicate a staggered sweep where sd = 0.5 such that sb � sd. For calculating statistics a window size of 30,000 base pairs with step size of 10,000
base pairs was used. Pink bars are SEMs. (A) The homozygosity of the most common haplotype (H1=p2

1), (B) the number of haplotypes in the population (“K”),
(C) the ratio of the most common to the second-most common haplotype, and (D) θs diversity.
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Table S1. Estimates for Drosophila melanogaster and humans for the proportion of the genome in which the sweep time of the
beneficial mutation is extended

Organism and
population size

Number of
coding genes

Recessive
deleterious
effect (sd), %

Zone of extended
sweep time

[genes in zone]

Beneficial
effect (sb)

impacted, %

Density of
recessive

deleterious

Proportion of
adaptive mutations

impacted, %

Drosophila ∼12,000
N = 106 100 100 b [0.01 gene] ∼5 1/(genome) ∼0

5 10 b [0.001 gene] ∼5 1/(30 genes) ∼0.003
1 10 b [0.001 gene] ∼1 1/(30 genes) ∼0.003

N = 103 100 1 Mb [130 genes] ∼5 1/(genome) ∼1
5 10 kb [3 genes] ∼5 1/(30 genes) ∼10
1 100 kb [20 genes] ∼1 1/(30 genes) ∼65

N = 102 100 — ∼5 1/(genome) —

5 1 Mb [130 genes] ∼5 1/(30 genes) ∼100
1 10 Mb [103 genes] ∼1 1/(30 genes) ∼100

Human (n = 104) ∼20,000 100 100 kb [3 genes] ∼1 1/(genome) ∼0.01
1 100 kb [3 genes] ∼0.10 1/(100 genes) ∼3

1/(30 genes) ∼10
1/(10 genes) ∼30

Dashes indicate no effect on sweep time due to α≤ 1, in which case the beneficial mutation effect size of interest is unlikely to sweep due to the recessive
deleterious variation in the genome.
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