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An understanding of the distribution of natural patterns of genetic variation is relevant to such fundamental biological fields as

evolution and development. One recent approach to understanding such patterns has been to focus on the constraints that may

arise as a function of the network or pathway context in which genes are embedded. Despite theoretical expectations of higher

evolutionary constraint for genes encoding upstream versus downstream enzymes in metabolic pathways, empirical results have

varied. Here we combine two complementary models from population genetics and enzyme kinetics to explore genetic variation

as a function of pathway position when selection acts on whole-pathway flux. We are able to qualitatively reproduce empirically

observed patterns of polymorphism and divergence and suggest that expectations should vary depending on the evolutionary

trajectory of a population. Upstream genes are initially more polymorphic and diverge faster after an environmental change, while

we see the opposite trend as the population approaches its fitness optimum.

KEY WORDS: Enzyme kinetics, fine-tuning, metabolic pathway, population genetics, selection.

Introduction
Genes work together to create phenotypes yet historically evolu-

tionary analyses have tended to focus on one gene at a time. With

the advent of high-throughput sequencing technology, research

on the genome-scale has exploded. Despite this shift in scope,

analyses have remained largely amechanistic and correlative.

The bulk of genomic studies continue to focus on statistical

relationships among genes and their correlated phenotypes while

neglecting the rich implications of both functional linkage,

which involves organizational and mechanistic aspects of gene

interactions, and the more general influence of network context

and topology. As an increasing body of literature indicates, such

“system-level” properties may influence the ability of component

genes to evolve, both in terms of adaptive change (see e.g.,

Flowers et al. 2007; Wright and Rausher 2010) and selective

constraint (see e.g., Fraser et al. 2003).

By “functional linkage” we mean here the interaction of

genes to produce phenotypic traits whether or not these genes are

physically linked on chromosomes. Although genes are arranged

on linear chains of DNA, they code for products that interact

in vast networks across diverse scales of biological hierarchy.

These networks are arranged in modular fashion with some gene

products interacting more strongly with each other than with the

gene products of other groups. Depending on the position of a

gene within a module or of a module within the greater network,

effects on phenotype, and hence fitness, may vary.

The importance of functional linkage and network structure

to the phenotypic effects of a gene may be illustrated in the

simple case of a linear metabolic pathway at steady state. Under

these conditions, an enzyme’s position in the pathway affects how

dramatically a change in its activity will modify overall pathway

flux (rate of metabolic production) (Kacser and Burns 1973;

Savageau 1976). For any given reaction, an equilibrium constant

(Keq ) describes the thermodynamically favored concentrations of

substrate and product. Enzymatic control of the first reaction of a

metabolic pathway is constrained by only one Keq , but control of

flux further downstream is constrained by all of the Keq values of

previous steps. Thus, all else being equal (e.g., expression levels),

a functional change in an upstream enzyme would likely have a

larger effect on the final product than an equivalent change at a

downstream enzyme (Kacser and Burns 1973; Hartl et al. 1985).
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Given that natural selection is expected to target enzymes that

influence flux (Watt and Dean 2000) and that upstream enzymes

tend to have majority flux control, it has been hypothesized that

genes coding upstream enzymes should be more evolutionarily

constrained, and thus less polymorphic, than genes coding for

downstream enzymes (Rausher et al. 1999; Cork and Purugganan

2004). Equivalently, when comparing orthologous pathways

across species, it is expected that upstream genes should be more

conserved than downstream genes.

More broadly, we should expect that in signaling and other

networks the amount of polymorphism observed in a gene will be

influenced by its location in the network. In the case of signaling

pathways, changes in genes encoding upstream proteins should

have greater effects on fitness and hence be more evolutionar-

ily constrained than genes encoding downstream proteins. In the

case of more complex network topologies, changes in genes en-

coding proteins that are more centrally embedded would lead to

relatively greater functional effects, and hence these genes would

be expected to be relatively more evolutionarily constrained than

those encoding less central proteins.

Although the study of genetic variation has a long history in

population genetics, few studies (e.g., Wright and Rausher 2010;

Rausher 2013) have explored the theoretical implications of func-

tional linkage or network context as they relate to selection and

subsequent patterns of variation. Despite this overall paucity of

theory, a number of empirical studies have analyzed natural pat-

terns of polymorphism and divergence across multiple pathways

and networks in a wide range of species. Results have differed

dramatically with some researchers finding the expected pattern

of disproportionate evolutionary constraint in upstream and cen-

trally embedded genes and others finding either the opposite trend

or no trend at all (Tables 1 and 2). Even in the simple case of a

linear metabolic pathway there are numerous reasons to expect

some discordance between empirical findings. Linear pathways

often function in either direction depending on factors such as the

physiological state, the cell-type or cell-cycle stage. Hence it is

sometimes unclear what “position” an enzyme should be assigned

in a pathway. Even delineating the limits of a pathway itself is

not always straightforward (Schuster et al. 2000). Furthermore,

pathways often have branched topologies rather than simple lin-

ear arrangements, and diverse biochemical pathways may share

identical enzymes (Greenberg et al. 2008). These difficulties are

compounded in multicellular organisms where the same genes

may encode proteins that have completely different functions in

different cell types (Piatigorsky 2007). Furthermore, multiple in-

termediate products may be under selective pressure rather than

just the downstream products of the pathway (Watt 1986). Also,

given that any pathway will itself constitute one component of a

greater hierarchical metabolic topology, it is not clear at which

level of this hierarchy selection would act most strongly. There T
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is also the possibility that the magnitude and targets of selection

are changing through time during adaptation. Finally, differences

among genes such as mutation rate, differential expression levels,

or posttranslational modifications may all contribute to evolution-

ary constraints independent of a gene’s position along a pathway.

While any number of the above complications may explain

discrepancies between empirical findings and theoretically ex-

pected patterns of variation, we argue that there is an even more

basic explanation that has not been fully explored. We develop

a simulation combining a forward population genetic model that

can describe population variation and a model of first-order en-

zyme kinetics of a linear pathway that links genotypes to fitness.

We model adaptation in an initially monomorphic haploid popu-

lation that evolves after a change in the environment. We find that

the dynamics of adaptation involve fine-tuning of fitness in a pro-

cess that is quite different from single gene adaptation dynamics.

As a result the pattern of divergence and polymorphism strongly

depends on the history of the evolving population, and particularly

on the stage of the adaptive process. During adaptation, two oppo-

site patterns of variation are observed in our model despite equal

mutation rates across all genes of the pathway. At the early stages

of the adaptive walk, the genes coding for upstream enzymes are

more polymorphic. As the population approaches the optimum,

the selective pressure switches from directional to stabilizing and

the genes coding for downstream enzymes become the most poly-

morphic. Patterns of divergence (i.e., genetic differences between

populations) change in a similar way, with substitutions initially

appearing in the upstream genes and subsequently in the down-

stream genes. Using this minimal model we are therefore able to

reproduce a range of patterns corresponding to those that have

been empirically reported.

Methods
We implement a Wright–Fisher infinite alleles model of a hap-

loid genome of n loci that describes the evolutionary dynamics

of a linear metabolic pathway. The model has two components:

a lower level that describes the development of phenotypes from

genotypes and a higher level that describes the evolution of a pop-

ulation composed of these phenotypes. At the lower level, phe-

notypes are based on an enzyme kinetics model of a metabolic

pathway composed of n enzymes. Each enzyme is encoded by one

gene, and the set of genes encoding all the enzymes of a pathway

comprise that pathway’s genotype. The steady-state concentra-

tions of substrates and products depend on the kinetics of all

constituent enzymes and are calculated for each unique genotype.

The absolute fitness of each genotype is determined by the rate

of production of the final product of its corresponding metabolic

pathway. At the population level, our model implements mutation,

selection, and drift and tracks resultant gene frequency changes

across generations.

METABOLIC PATHWAY MODEL

The kinetics of an enzymatic reaction can be modeled as a three-

step process of association, catalysis, and dissociation:

E + S
k1�

k−1

E S
k2�

k−2

E P
k3�

k−3

E + P (1)

where E is the enzyme, S the substrate, P the product and ki and

k−i are the forward and backward rates of a reaction. The evolution

of the system can be modeled by mutating all six rate parameters

and changing the enzyme concentration. We know that mutations

can produce enzymes with multiple combinations of parameters

affected and with variable magnitudes. We therefore aggregate

all the rate parameters and enzyme concentration in a forward

Rf = (Vmax/Km)f and a backward parameter Rb = (Vmax/Km)b.

This involves an assumption that enzymes are at sufficiently high

concentration that they are substantially below saturation. Thus,

we approximate (1) by:

S
R f

�
Rb

P

and link n such reactions with the product of one being the sub-

strate of the next one (both products and substrates now denoted

by S) to create a linear pathway

S1

R f 1

�
Rb1

S2

R f 2

�
Rb2

. . . Sn

Rfn

�
Rbn

Sn+1

composed of n enzymes (Ei, i = 1... n) catalyzing n reversible

reactions. The reversibility parameter αi = 1/Keq = Rbi/Rfi links

the two parameters of each reaction, and depends only on the

thermodynamics of the reaction (i.e., it is not mutable) (Wright

and Rausher 2010). We assume the same reversibility parameter

α for all reactions in the linear pathway. According to the law of

mass action, the rate of change of the substrate concentration [Si ]

is:

d[Si ]

dt
= [Si−1]Rfi − 1 + [Si+1]Rbi − [Si ](Rbi−1 + Rfi) (2)

The concentration of the first substrate ([S1]) and of the fi-

nal product ([Sn+1]) are constant ( d[S1]
dt = 0,

d[Sn+1]
dt = 0). Their

values are set such that their ratio is half of the equilibrium ra-

tio that ensures that there is flux through the pathway (S1 = 1,

Sn+1 = 1
2 · ∏n

i=1 αi ). Thus, we are able to study the evolution of

the enzymes in the pathway as a single module, assuming that

enzymes upstream and downstream of the pathway do not evolve.

Fitness is determined by the rate of production (J ) of the

final product ([Sn+1]) when all metabolite concentrations are at

steady state:

J = [Sn]Rfn − [Sn+1]Rbn (3)
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The absolute fitness (W ) is given by a Gaussian function

centered on the optimum rate of production (Jopt ) with standard

deviation σw = 0.2,

W = e
− (J−Jopt )2

2σ2
w (4)

The choice of a fixed optimum and steady-state values assumes

the dynamics of steady-state metabolism.

POPULATION GENETIC SIMULATION

We model the evolution of a population of size N as a Wright–

Fisher process by explicitly simulating genotypes in an infinite

alleles model. Each enzyme is encoded by a gene Gi and

mutations are modeled by a Poisson process with a mutation

rate, μ, for each gene. We model the magnitude of mutation

effects, m, as displacements added to the forward parameter,

Rfi, of the mutated gene. The backward rate parameter Rbi

changes accordingly as α is constant. We restrict the values

of Rfi + m between 0 and 1. For all simulations m is sampled

from a normal distribution centered at Rfi and with standard

deviation σμ. In the description of the landscape topology we use

a uniform distribution of mutation sizes (m ∼ U (0, mmax)). We

explore a range of values for the population genetic parameter

� = 2Nμ (� = 10−3, 10−2, 0.1, 1, 10), the standard deviation

of distribution of mutation effects σμ = 0.01, 0.05, 0.1, 0.5,

the reversibility parameter α = 0.001, 0.01, 0.05, 0.5, 1 and the

strength of selection σw = 0.01, 0.1, 0.2, 0.5.

SIMULATION PARAMETERS

In all simulations we assume no recombination between the genes,

and Jopt = 0.5. Results in the main text refer to simulations of a

two-gene pathway, though we also simulated four-gene genotype

evolution to verify that similar patterns emerge in longer path-

ways (Supporting Information). We perform two sets of 10,000

simulation runs starting from a monomorphic population with ran-

dom combinations of rates (Rfi ) such that the fitness of the initial

genotype is either far (0.19 < W < 0.21) or close to the opti-

mum (0.79 < W < 0.81). The population size is set to 103 and

the total simulation time is 104 generations. To study patterns of

polymorphism across genes we measure the number of alleles

present in the population at each locus at specified time intervals

(t = 10, 102, 103, 104) in the simulations starting far from the op-

timum. For the study of patterns of divergence during adaptation

we calculate the time point when the population first reaches the

optimum. We consider the population adapted when the mean fit-

ness reaches the neutral regime, the point at which fitness gains are

offset by drift. This is usually considered to be when W̄ > 1 − 1
N ,

but because the neutral regime boundary is not necessarily sharp

we use W̄ > 1 − 5
N as our cutoff. For the simulations where

the population successfully reached adaptation, we calculate the

total number of mutations for each gene in the most fit genotype.

For the study of patterns of divergence after the population has

reached the optimum we perform a set of 1000 simulations with

the same parameters as before, but for 3 · 105generations so there

is enough time to observe the change in the divergence pattern.

Simulations are written in C++ using the GNU sci-

entific library (Galassi et al. 2009). Source code is avail-

able at http://multigene.sourceforge.net/ and http://dx.doi.org/

10.5061/dryad.bf597. Simulation documentation is included in

the Supporting Information.

Results
To understand variation patterns in metabolic pathways we

explore the geometry of the fitness landscape and perform

simulations of populations adapting to a new environment. We

study the patterns of polymorphism within each population

during adaptation and the patterns of divergence of an adapted

genotype from its ancestral state.

FITNESS LANDSCAPE

We can use the shape of the fitness landscape in concert with pop-

ulation genetic theory to get some intuition about the expected

dynamics of adaptation and subsequent patterns of variation. In

the case of mutation limited regimes � � 1, the subsequent lack

of variation in the population would make the search for patterns

of polymorphism irrelevant as there would be no variation to

examine. We thus focus on the case where adaptation is not mu-

tation limited (� � 1) such that multiple mutations are present

in the population at the same time. New mutations are sampled

from a uniform distribution of values, with maximum value 1

(m ∼ U (0, 1)) that allows a genotype to reach all values of R fi

with a single mutation in the corresponding gene. We now focus

on a genotype coding a pathway of two enzymes that has a fitness

landscape that is easy to visualize and understand. The fitness

landscape is a surface in a 3 dimensional space that includes the

rates Rf1 , Rf2 , and fitness W as axes. The landscape is smooth

with a single ridge of high fitness (Fig. 1A). The value of the op-

timal flux Jopt determines the location of the ridge. Large values

of Jopt correspond to landscapes with a high fitness ridge located

at the large values of R fi and small values of Jopt correspond to

landscapes with a high fitness ridge located at the small values

of R fi . When reversibility (α) is low, the rate of the upstream

gene Rf1 is the most important determinant of fitness, as small

changes of Rf1 cause large fitness changes (Fig. 1). When α is

large, the landscape is more symmetric and both enzymes have

similar contributions to fitness. In a monomorphic population lo-

cated far from the optimum (Rf1 = 0.15, Rf2 = 0.15, W = 0.2)

(Fig. 1B) the rate of beneficial mutations in the two genes is very
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Figure 1. (A) Fitness landscape of a pathway with two enzymes. Each point in the surface corresponds to a unique genotype. Light

color corresponds to genotypes with high fitness, dark to genotypes with low fitness. The value of the absolute fitness is marked on

the fitness isoclines. Mutations in each gene displace the genotype either horizontally or vertically. An example trajectory is shown

with black dots corresponding to the successive genotypes and black arrows to the mutations linking them. Note that mutations in the

second gene, corresponding to movement along the y-axis, are mostly parallel to the fitness isoclines. (B) Two one-dimensional slices of

the fitness landscape are superimposed. The continuous line corresponds to fitness along a horizontal line passing through point “L” in

Figure 1A and the dashed line to fitness along a vertical line passing through point “L.” The bars along the x-axis correspond to regions

of beneficial (light) neutral (white) or deleterious (dark) mutations. (C) As in B, but for point “H” in Figure 1A.

similar. However, beneficial mutations in the upstream gene have

a much larger fitness effect than beneficial mutations of similar

magnitude in the downstream gene. We thus expect that adapta-

tion far from the optimum will be driven by adaptive mutations

in the upstream gene. In a monomorphic population located close

to the optimum (Rf1 = 0.38, Rf2 = 0.38, W = 0.8) (Fig. 1C) the

rate of beneficial mutations is different between the upstream and

downstream genes. In this case most new mutations in the up-

stream gene are strongly deleterious and will tend to reduce the

amount of polymorphism in the upstream gene. The downstream

gene is not as constrained in this manner. In a very fit monomor-

phic population (located on top of the ridge), most mutations in

the downstream gene are neutral, while most mutations in the

upstream gene are deleterious.

Combining the above, in a population that is in the process

of climbing a hill toward a fitness peak (directional selection),

beneficial mutations are available to drive adaptation and the

amount of polymorphism is determined by the supply of new

beneficial mutations (Desai and Fisher 2007). On the contrary, in

a population that is already located on the peak of the landscape

(stabilizing selection), most new mutations will be deleterious

and therefore the polymorphisms present in the population will

be primarily determined by a selection-mutation balance (Wright

1938). During adaptation to a new environment we expect to

see a transition from the directional selection regime to the

stabilizing selection regime. Given that this transition would

not necessarily happen synchronously for all enzymes of the

pathway (Supporting Information Fig. S5) due to the underlying

hierarchical structure of our model, we should expect to see

evidence of a “fine-tuning” mode of adaptation resulting in a

temporal partitioning of variation across the genes in the pathway.

In this fine-tuning mode of adaptation, variation should initially

be driven by large mutational steps in the upstream gene followed

by smaller effect mutations in the downstream gene, leaving

characteristic signatures of polymorphism and divergence.

We visualize the modes of adaptation on the genotype space

by plotting the difference of the fixation probabilities of mutations

in the upstream and downstream genes. We assume a population

size of 103 and m ∼ U[0,1] and calculate fitness Wi j for a dense

grid of genotypes (Rf1 , Rf2 ). For each genotype Rf1 = i, Rf2 = j

we calculate the average selection coefficients (s̄m) of benefi-

cial mutations (Prben = Pr[Wm > (Wi j + 5/N )]) in the upstream

and downstream genes. We then calculate the product of the av-

erage probability of fixation of mutations Pr f m = 1−e2s̄m

1−e−2s̄m N for
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Figure 2. Far from the optimum adaptation proceeds with large

effect mutations in the upstream gene (light shade area), while

close to the optimum ridge it proceeds by small effect mutations

in the downstream gene (dark shade area). Contour lines represent

the difference between invasion probabilities of a new mutation

in the upstream and downstream gene. The white area represents

the neutral region where the difference in probabilities is less

than 5/N. The invasion probability at each point in the graph is

calculated as the probability of a genotype acquiring a beneficial

mutation with a fitness effect large enough to overcome drift

and fix in a monomorphic population. We assume m ∼ U(0, 1) and

N = 103.

each gene and the probability of a mutation being beneficial

for each gene (Prupstream
fixation = Prupstream

fm Prupstream
ben or Prdownstream

fixation =
Prdownstream

fm Prdownstream
ben ), which corresponds to the fixation proba-

bility of mutations in each gene in a monomorphic population of

genotype i, j . We then plot the difference Prupstream
fixation − Prdownstream

fixation

that indicates whether adaptive mutations in the upstream or

downstream gene will tend to sweep in the population (Fig. 2).

We observe three regions: one “coarse-grained” region in

which genotypes containing new mutations of large effect have

a greater probability of invading, a fine-tuning region in which

genotypes containing new mutations of smaller effect have a

greater probability of invading, and a neutral region in which

the difference in these probabilities is less than 5/N . In the first

coarse-grained region, genotypes have low fitness and the most

likely mutant to invade a monomorphic population will be one car-

rying a mutation in the upstream gene. In the fine-tuning region,

genotypes have high fitness and the most likely mutant to invade

will be one with a downstream gene mutation. In populations with

smaller size, the neutral regime around the fitness peak is larger,

reducing the fine-tuning ability of the adapting population.

Thus, if adaptation is not mutation limited (� � 1), dur-

ing an adaptive walk starting with a monomorphic population far

from the optimum multiple adaptive mutations will be present

in the population at the same time and most of them will be in

the upstream gene. The transition from directional to stabilizing

selection is expected to leave a characteristic signature in the

order of substitutions across the genes of a metabolic pathway,

with mutations first fixing in the upstream gene. A population

evolving in the coarse-grained region of adaptation is expected to

be more polymorphic in the upstream gene that will also have a

higher rate of divergence. On the contrary, a population evolving

in the fine-tuning region is expected to have a reduced amount

of polymorphism in the upstream gene and a higher rate of poly-

morphism in the downstream gene. Thus, as long as an adaptive

walk crosses the boundary between the two regions, we expect

to see a transition in the observed patterns of variation. Because

the maximal contributions to flux of downstream genes in a direc-

tional pathway will always be subject to the equilibrium constants

of all upstream enzymes (as described in the introduction), pat-

terns of polymorphism, and divergence are expected to remain

qualitatively similar for pathways of two or more genes.

PATTERNS OF POLYMORPHISM

The picture of variation that emerges from a static analysis of

the fitness landscape is validated by simulating adaptive walks

(see Supporting Information: 1. Parameter exploration). The sim-

ulated populations are asexual, genes are linked and we repeat

the simulations for pathways of 2 and 4 genes. Simulations start

from monomorphic populations with low fitness and at specific

time intervals we measure the number of alleles in the population

at each locus. We find for a wide range of parameter values (�:

0.1 – 10, σμ: 0.05 – 0.5, α: 0.001 – 0.05, σw: 0.1 − 0.5 see Sup-

porting Information: 2. Parameter exploration) that the upstream

gene is more polymophic at the beginning of the adaptive walk

while the downstream is more polymorphic when the population

reaches the optimum. In the representative case of 2 genes and a

conservative choice of � = 0.1, in the beginning of the adaptive

walk (time t = 102 generations) the number of alleles at the up-

stream gene is significantly higher than the number of alleles at the

downstream gene (Wilcoxon signed rank test, P = 1.2 · 10−10),

while at time t = 104 the opposite is true (P = 2 · 10−16). More

generally, across the whole pathway the upstream genes are the

most polymorphic at the beginning of the adaptive walk, but, as

the population approaches the optimum, the trend is reversed and

the downstream genes become the most polymorphic, both as

measured by the number of alleles (Fig. 3, Supporting Informa-

tion Fig. S7) and heterozygosity (Supporting Information Figs. S3

and S4).

The pattern of phenotypic variance (Var(Ri ) = E[(pi Ri )2]−
(E[pi Ri ])2) of the reaction parameters (R fi ) also shows a parallel

shift to polymorphism (Fig. 3B). At generation 10 the phenotypic

variance is low in both genes although it is marginally higher in

the upstream gene than the downstream gene (Wilcoxon signed

rank tests P-value: 0.063). At generation 100 the phenotypic

variance of both genes is high and is significantly higher in the

upstream gene than in the downstream (P-value: 0.018). After

103 generation the pattern reverses and the downstream gene has

EVOLUTION JANUARY 2015 8 3



D. SELLIS AND M. D. LONGO

1.0

1.1

1.2

1.3

1.4

1.5

gene

nu
m

be
r 

of
 a

lle
le

s

1.0

1.1

1.2

1.3

1.4

1.5

upstream downstream

A

gene

V
ar

( R
i)

0.01

0.02

0.03

0.04

upstream downstream

B

102 103 104 105generation

Figure 3. The degree of polymorphism in genes coding for en-

zymes across a linear metabolic pathway depends on which phase

of adaptation is studied. (A) During the initial phase of adaptation

(coarse grained) the upstream genes are more polymorphic, while

during fine tuning the downstream genes become the most poly-

morphic ones. (B) The pattern of phenotypic variance also changes

depending on the phase of adaptation. During directional selec-

tion the upstream genes are the most variable, i.e the variance is

distributed along the trajectory of adaptation (cf. Fig. 1). During

stabilizing selection the downstream enzymes are more variable.

a higher phenotypic variance (P-values: 0.013, 1.2 · 18−26 at 103

and 104 generations).

PATTERNS OF DIVERGENCE

We then focus on the patterns of divergence during adaptation. We

perform two series of simulations starting from a monomorphic

population with random combinations of rates (Rfi ). For one set

of simulations we include as starting states only combinations of

rates that correspond to low fitness (0.19 < W < 0.21) and for

the other we include combinations that correspond to high fitness

values (0.79 < W < 0.81) such that the fitness of the starting

genotype is either far or close to the optimum. As soon as the

population reaches the optimum we calculate the total number

of substitutions (fixed mutations) for each gene in the most fit

genotype (Fig. 4A). Thus the mutations we study at the end of the

walk are mainly mutations accumulated during an adaptive walk

and not neutral drift.

The distribution of fitness effects (�W ) and of muta-

tional sizes (�J ) decrease along the pathway (Fig. 4A, B). The

upstream gene has significantly larger �J than the downstream

when starting both close and far from the optimum (Wilcoxon rank

sum test, close: P = 3.0 · 10−13, far: P < 2.2 · 10−16). The same

holds true for �W (close: P < 2.2 · 10−16, far: P < 2.2 · 10−16).

Median step sizes in terms of flux are smaller in simulations

starting closer to the optimum and in the downstream gene the

spread (error bars) is larger. The smaller step sizes result from

the fact that large step sizes close to the fitness peak would result

in overshooting the optimum. The error bars are larger because

the sample size of mutations is smaller: for the same number of

simulations it takes fewer steps to adapt if the population starts

closer to the optimum. Although the upstream gene contributes

the most to fitness in all cases, its relative contribution to fitness

is diminished in the simulations starting closer to the optimum.

This is evident in the fact that the ratio of average contribution

to fitness of upstream versus downstream genes is higher in pop-

ulations starting far from the optimum than those starting close

and is a reflection of the fine-tuning process implicit in the fitness

landscape. We quantify the contribution of a gene to fitness �W

by calculating the fitness changes of a genotype at each fixed

mutation in the particular gene in the most fit genotype at the gen-

eration where the population reaches adaptation. The difference

(and ratio) in the median �W across simulations between the

upstream and downstream gene is 0.129 (3.026) for simulations

starting far from the optimum and 0.07 (2.46) for simulations

starting close to the optimum.

The total number of substitutions is larger in the simulations

starting far from the optimum, as the genotypes require more steps

to adapt (Fig. 4, Supporting Information Fig. S4). However, the

ratio of average substitutions in the simulation starting far from

the optimum to the average substitutions in simulations starting

close to the optimum decreases along the genes of the pathway

(far: 2.5, close: 1.3). Also, relatively more substitutions occur

in the downstream genes as the populations approach the fitness

peak (Fig. 4D, Supporting Information Fig. S6). The median fit-

ness increase �W is 0.19 in the upstream gene and 0.06 in the

downstream gene in simulations starting far from the optimum

and for simulations starting close to the optimum, �W is 0.12

and 0.05 for mutations in the upstream and downstream genes

correspondingly. Given that these substitutions increase fitness,

these observations imply a selective process that favors fixation

of genes depending on both their position in the pathway and

distance from the fitness optimum.

In contrast to the selective pressures driving diversity in the

short-term, continued divergence in populations in the long-term

(assuming no change in the environment) is shaped by neutral
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Figure 4. Distribution of mutational step sizes (� J ), fitness effects (�W), and total number of mutations in adapted genotypes calculated

from 10,000 adaptive walks in a linear pathway of two genes. (A, B) Starting far from the optimum mutations in the upstream gene have

significantly larger effect on flux and fitness, but this pattern is attenuated in simulations starting close to the optimum. (C) The difference

in the number of substitutions in the upstream and downstream genes is larger in simulations starting far from the optimum. Points

correspond to median values and error bars to first and third quartiles. (D) Simulations starting far from the optimum. The percentage of

mutations fixed in the upstream and downstream genes depends on the order in which mutations fixed. Shaded regions correspond to

95% binomial sampling confidence interval.

forces. We study this scenario by moving our focus from indi-

vidual genotypes that have just reached the optimum to popu-

lations that approach the optimum and then drift on top of the

neutral plateau at the end of an adaptive walk. We perform 103

simulations starting far from the optimum (0.19 < W < 0.21)

and running for 3 · 105 generations. During the simulations we

calculate the average population divergence for each gene by

weighting the divergence (number of fixed mutations) of each

genotype by its frequency in the population excluding the very

low frequencies (x < 0.01) (Fig. 5 and Supporting Information

S8). We observe that the upstream gene diverges early during

the adaptive walk. Once the population reaches the optimum,

however, the rate of divergence slows down significantly until

the increase in divergence is linear due to the rare neutral fix-

ation of mutations. The downstream gene also shows an initial

fast increase in divergence that also becomes linear after reach-

ing the optimum. However, the rate of divergence (slope) for

the downstream gene is larger as it is less constrained, which

contributes to the inversion of the pattern of divergence across

genes.

Discussion
In this study, we explore the emergence of variation patterns in

metabolic pathways through the interplay of evolutionary and en-

zyme kinetic dynamics. We do not explicitly model variation but

only the necessary requirements for variation to emerge. To this

end, we link two models at different levels and timescales. At the

level of the individual genotype, we implement an enzyme kinetic

model for a linear metabolic pathway and calculate steady state

concentrations of pathway substrates and products. At the pop-

ulation level, we implement a forward population genetic model

of genotypes encoding enzymes of the pathway. The two levels

are connected by the fitness of a genotype, which is determined

by the rate of production of the last product of its corresponding

metabolic pathway in relation to a fixed optimum. In starting our

simulations with genotype parameters seeded by random values

which place their phenotypes some distance from the optimum,

we simulate a situation in which populations must adapt to a

change in environment.

This modeling approach involves two important types of in-

teractions, epistatic interactions between genes and interactions
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Figure 5. Average population divergence of upstream and

downstream genes as a function of time, across 1000 simulations.

During adaptation to a large environmental change mutations

fix quickly in the upstream gene leading to a very high rate of

divergence. As soon as the population adapts the upstream gene

only fixes mutations linearly. Similarly the downstream gene

initially diverges quickly, however not as fast as the upstream

gene. After the population reaches the optimum, its neutral rate

of divergence is higher and the pattern of divergence eventually

changes with the downstream gene becoming more divergent

than the upstream. We define the average population divergence

for the upstream gene as Dupstream = ∑k dupstream
i pi , where

dupstream
i is the number of mutations fixed since the beginning

of the simulation in the upstream gene of genotype i , pi is the

frequency of genotype i and k is the number of genotypes with

frequency larger than 0.01. The average population divergence is

defined analogously for the downstream gene.

between competing genotypes. Indeed, individual gene fitness

within any particular genotype is meaningless given that the flux

on which fitness is based is a system-level property dependent on

the functional linkage/kinetics of all constituent enzymes. In this

sense, all interactions between genes in our model can be consid-

ered epistatic. Interactions between genotypes arise as we do not

make the common assumption that the most fit genotype will de-

terministically outcompete all others. Rather, we allow multiple

genotypes in our simulated populations to evolve together. This

process results in complex population dynamics such as clonal

interference (Barrick and Lenski 2013) that contribute to the pat-

terns of variation we find.

By implementing the above models in simulations of adap-

tive walks starting from monomorphic states with low fitness and

by sampling genetic variation along evolutionary trajectories, we

are able to qualitatively reproduce all the patterns of variation

that have been observed in empirical studies. The differential

amounts of variation observed stem from the asymmetrical ac-

tion of selection related to the reversibility α of the pathway. In

a directional pathway, with all else equal, the upstream genes are

more important in the sense that equivalent changes in upstream

genes have a larger effect on overall pathway flux and, therefore,

fitness (Hartl et al. 1985). While the population is in a mostly

directional selection regime, genes coding for upstream enzymes

have a higher probability of being polymorphic than genes cod-

ing for downstream enzymes. In this phase, adaptation is driven

by multiple, independent partial selective sweeps in the upstream

genes. However, once the population adapts, selection is mostly

stabilizing and we observe the opposite pattern, with higher levels

of polymorphism and rates of fixation in the downstream genes.

Intermediate levels of polymorphism and divergence with no po-

larity in terms of pathway directionality may be found between

these two selection extremes.

Tracking the dynamics of adaptation in terms of the fitness

landscape, we observe that at the early stages of an adaptive walk

multiple mutations in the upstream genes increase in frequency

and an elongated cloud of genotypes initially spreads mostly

along the Rf1 axis, contributing to high phenotypic variance at

the upstream genes (Figs. 1, B). As the population approaches

the optimum ridge, the shape, and size of the genotype cloud

changes. It becomes larger (higher phenotypic variance) as the

top of the fitness peak is flatter, and spreads more along the axes

of downstream genes.

Relative differences in levels of polymorphism between

upstream and downstream genes over the course of the simulation

are a function of differences in rates of beneficial and neutral

mutations. The propoportion of random mutations that can

be beneficial during adaptation for all genes decreases as the

population approaches a local optimum, though these rates differ

according to pathway position. The initially higher polymorphism

of the upstream genes when the population is far from the opti-

mum is driven by multiple independent beneficial mutations, as

it is easy to become slightly better in a maladaptive environment.

Beneficial mutations in the downstream genes have the same

probability of occurrence, but the magnitude of their fitness

increase is less, due to their generally smaller contribution to flux,

and hence they do not increase in frequency to the same degree

as the upstream genes. As the population moves closer to the

optimum, the upstream genes become more constrained (due to a

higher rate of deleterious mutations), and thus less polymorphic.

Downstream genes are less constrained at this “fine-tuning” stage

and thus develop higher levels of polymorphism. Finally, on top

of the fitness peak, the trend toward higher polymorphism in the

downstream genes continues as a result of their greater freedom

to drift neutrally than the now highly constrained upstream genes.

Similarly, during the adaptive walk mutations fix initially

with higher probability in the upstream genes, which contributes

to higher levels of divergent variation between lineages. Far from

the optimum, adaptation proceeds substantially by substitutions

in the upstream enzyme while, near the optimum, substitutions

in the downstream gene increase in prevalence. Very close to the

optimum, downstream genes continue to accumulate neutral and

nearly neutral substitutions, whereas at the upstream gene puri-

fying selection restricts the accumulation of substitutions. At the
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end of an adaptive walk, the distribution of mutational sizes and

fitness effects of substitutions in adapted genotypes decreases

from upstream to downstream genes. These findings regarding

substitutions are in agreement with Wright and Rausher (2010),

suggesting that the predictions of both approaches may be robust

to variation in details of the models. One apparent exception is

that Wright and Rausher (2010) did not find that the distribu-

tion of mutational sizes decreases from upstream to downstream.

However, they quantified mutational sizes in a different way. We

measure the mutation size in terms of effect on flux �J, whereas

Wright and Rausher (2010) measured it in terms of effect on the

kinetic parameter k. They found that it was approximately equal

across genes. However, because the effect of a given change in k

on flux decreases from upstream to downstream genes (because

of the parallel decline in flux control), the predictions of the two

models are similar.

Fisher (1930) used the manipulation of a microscope as a

metaphor for adaptation. He argued that changes of large effect

applied randomly, such as movement of the microscope lenses

by any angle or distance, will most likely distort the image we

see, while smaller changes would be safer to perform. By anal-

ogy, and in concert with his geometric theory of adaptation, he

argued that the smallest possible mutations should be the ones

favored by natural selection. Kimura (1983) refined expectations

regarding the distribution of fitness effects by taking into account

the fact that drift would remove mutations of small effect from

an adapting population. Thus mutations of intermediate fitness

effect would be expected to dominate the adaptive process. Orr

(1998) further refined our understanding of adaptation by rec-

ognizing that the intermediate fitness value would be relative to

the distance from the optimum and would diminish as adaptation

proceeds. As a consequence, the distribution of fitness effects of

beneficial mutations of an adapted genotype would be an expo-

nential with the largest mutations fixing in the first adaptive steps

and the smaller effect mutations fixing at the final steps. Wright

and Rausher (2010) found a similar pattern evident in the number

of substitutions found in upstream versus downstream genes of a

metabolic pathway, and attributed this result to an interplay be-

tween dominant fitness effects of upstream genes and neutrality.

We extend this result by incorporating short time scale dynamics

and polymorphism. Doing so we find that adaptation proceeds in

a fine-tuning mode. Returning to the microscope analogy, just as

we first have to adjust the coarse focus knob and then use the

fine focus knob to get a clear image, selection may be expected

to first “adjust” upstream genes while “fine tuning” with down-

stream genes. Further, the specifics regarding the optimal “knobs”

to manipulate (= position in a pathway to “adjust”) will depend

on how close we are to begin with to a “clear image.” Patterns of

both divergence and polymorphism follow from the evolutionary

analog of this fine-tuning dynamic.

While there are clearly a great number of factors that may af-

fect actual distributions of genetic variation in nature, our results

may serve as a simple null model for expectations. Even holding

all other complexities equal, expectations regarding levels of

polymorphism and divergence in a functionally linked and hier-

archical pathway must consider the distance of populations from

local fitness optima. A population or species that has recently ex-

perienced a large change in environment can be expected to show

higher levels of polymorphism and substitutions in upstream

versus downstream genes of metabolic pathways under selection.

Conversely, if we were to find elevated levels of polymorphism

or substitutions in upstream genes that may indicate a population

is currently adapting to a major change in selective pressure.

Elevated levels of polymorphism or divergence in downstream

genes may be an indication of constraint of upstream genes and

neutral drift, as is commonly assumed, or may be an indication of

a “fine-tuning” process of adaptation. Genome-wide scans might

benefit from incorporating expectations of such an asymmetric

mode of adaptation to make better sense of sequence data. Perhaps

the best test of these expectations would be in analyzing genetic

change found in experimental evolution experiments such as

those of (Tenaillon et al. 2012; Herron and Doebeli 2013; Kvitek

and Sherlock 2013; Lang et al. 2013). Indeed, in a recent review

of evolutionary experiments, (Hindré et al. 2012) highlighted

the importance of compensatory mutations in downstream genes

after the first adaptive mutations in genes with a central location

in the regulatory network. Our model allows for both this sort of

“compensatory” fine-tuning after “over-shooting” as well during

a gradual approach to the fitness peak.

There are several limitations to our approach that should

be noted. First, while our findings have clear relevance to

studies of clonally reproducing haploid populations such as

bacteria and yeast (reviewed in Hindré et al. (2012)), it is

unclear how relevant our findings would be to diploid, sexually

reproducing populations. Future extensions of our model such

as the incorporation of diploidy and recombination may shed

light on this question. Similarly, while our results should help to

explain patterns of variation in linear metabolic pathways, further

work will be necessary to determine the effects of more complex

topologies, such as how changes in parts of more comprehensive

topologies (e.g., full regulatory or metabolic networks) may

ripple forth to affect remote regions of the system. Another thing

to keep in mind about our approach is that we are modeling

steady state metabolism with the assumption that enzymes are far

from saturation. In nature, however, other metabolic dynamics

could be important determinants of fitness. These include rare

occurrences with large consequences such as the need for rapid

energy production to evade predators (Watt and Dean 2000).

The formalism of our model may be applied to a large num-

ber of evolving directional processes besides metabolic pathways.
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The underlying principle is general and similar dynamics should

be expected in hierarchical or directional processes where

changes at a higher level or at the first step are more important

and influential for the final product. We would thus expect

that the evolution of diverse processes such as protein folding,

ontogenetic development, ritual mating behavior, and cascades in

gene regulatory networks or even nonbiological processes such as

assembly lines and computer software development might follow

similar dynamics and show parallels in their variation patterns.
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