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Part I

Basic results of the viral dynamics model
1 Deterministic model
In the absence of mutation or migration, the dynamics for a virus of strain i, present in compartment
j, can be described using the basic viral dynamics equations (1):

ẋj = λj − βijxjvij − dxxj
˙yij = βijxjvij − dyyij
˙vij = kyij − dvvij

(1)

where xj , yij and vij are the populations of uninfected cells, cells infected with strain i and free
virus of strain i, respectively - all in compartment j. Uninfected host cells die at rate dx and are
produced at rate λj . These cells become infected by strain i at rate βij . Infected cells die at rate dy
and produce free virus at rate k. Free virus is cleared at rate dv. Implicit in these parameter choices
is the assumption that compartments differ only in the rate at which uninfected cells are produced,
and viral strains differ only in the rate at which they infect new cells.

The basic reproductive ratio (i.e. the number of new infections generated by an infected cell be-
fore it dies in a totally susceptible population of host cells) for this model isRij

0 = λjβijk/(dxdydv)
(Ref (1)).

This system can be simplified by assuming that the population of free virus instantaneously
reaches an equilibrium with respect to the population of infected cells. This separation of timescales
is valid when we are not interested in short term fluctuations, because the dynamics of the virus
tend to be much faster than those of cells (1; 2). We therefore set ˙vij = 0 and get v = (k/dv)y, and
by defining Bij = βijk/dv we reduce the model to two equations tracking only cells:

ẋj = λj −Bijxjykj − dxxj
˙yij = Bijxjyij − dyyij

(2)

There are two steady state solutions to this system of equations when only a single strain is
present: When Rij

0 ≡ λjBij/(dxdy) < 1, there is no infection, and when Rij
0 > 1, the infection

reaches a steady state level:

{x∗j , y∗ij} =



{
λj
dx
, 0

}
≡ {Nj, 0} if Rij

0 < 1

{
Nj

Rij
0

,
Njdx
dy

(
1− 1

Rij
0

)}
≡
{
Nj

Rij
0

, Ki
j

}
if Rij

0 > 1

(3)
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When there is more than one virus strain in a single compartment at a given time, the equations
can easily be modified and new steady state solutions and stability conditions derived. The result is
that only one virus strain ever remains in the compartment at steady state (competitive exclusion)
(1). This is the strain with the highest R0 value.

These steady state equations give rise to terms we will frequently use throughout the paper.
The total number of uninfected host cells that a compartment j contains when there is no virus
present is called the compartment size and is given by Nj . The equilibrium number of infected
cells of type i that are present in a compartment when Rij

0 > 1 for strain i and Rij
0 > Rkj

0 for all
k 6= i is termed the carrying capacity and is denoted by Ki

j .

This system can be extended to account for mutation and migration, along with the presence of
multiple strains:

ẋj = λj − xj
∑
k

Bkjykj − dxxj

˙yij = xj
∑
k

µkiBkjykj − (dy +
∑
q

mjq)yij +
∑
q

mqjyiq
(4)

where µki is the probability per infection event that strain k mutates to strain i, and mqj is the rate
of migration from compartment q to compartment j. Note that we have ignored the migration of
uninfected cells, since it is not important for the evolutionary process we are interested in. Because
we are only tracking cells, and not virus, we have implicitly assumed that it is infected cells that
migrate. This assumption should have only miminal influence on our results, because while virus
numbers are much larger than those of infected cells, the establishment probability starting from a
single virion is much lower.

This system no longer yields a tractable analytic solution when Rij
0 > 1 for any {i, j}, and in

general is better described by a stochastic process, since we will mainly be interested in the time
until equilibrium is reached. The result of mutation and migration is that the equilibrium levels
will be altered compared to Eq. (3). The major qualitative difference is that strains will persist in
compartments where Rij

0 < 1. When u and m are small, these levels tend to be very low compared
to the Nj and Ki

j , and differences in {x∗j , y∗ij} from Eq. (3) are minor. However, as this paper
demonstrates, mutation, migration and the relative viral fitness values in different compartments
have a major influence on the time to reach the equilibrium state.

While in general the migration rates mqj can take on any values, we choose a simple and bi-
ologically realistic migration scheme to reduce the number of independent parameters. In this
scheme, each pathogen migrates out of its current compartment at rate m. Migrants from a given
compartment are then distributed into all four compartments (including the one they came from)
proportionally to the compartment sizes, so that larger compartments get more migrants. There-
fore, the rate of migration from compartment q to compartment j becomes

mqj = m
Nj

NTOT

(5)
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where NTOT =
∑

j Nj is the total number of uninfected host cells in the body before infection.

2 Stochastic model
The deterministic viral dynamics model tracking uninfected and infected cells serves well to de-
scribe the growth of the infection when the number of cells of any type is large, however, when
cell numbers are small, such as when the infection initially starts or when a new strain arises,
stochastic effects become important. The deterministic model can be reformulated as a branching
process (similar to (3–5)) during these initial stages of infection, since the number of uninfected
target cells (x) is approximately constant on this timescale:

Yij → Yij + 1 ... rate: Rij
0 dy

Yij → Yij − 1 ... rate: dy.
(6)

This is a standard birth-death process. Note that there are an infinite number of stochastic processes
that reduce to the same deterministic equations, and for some infections, burst-death models (5–7)
- where many new infections occur from a single infection nearly simulataneously - may be more
appropriate. To keep our model general and to ensure closed form solutions for the probabalistic
expressions described below, we have chosen the simplest process.

If a single cell infected with strain i arrives in compartment j where it has Rij
0 > 1, then the

probability it will grow to establish an infection ( described by Equation 3) as opposed to going
extinct(8) is

P ij
est = 1− 1

Rij
0

. (7)

If a single cell infected with strain i arrives in compartment j where it has Rij
0 < 1, then P ij

est = 0
but this cell may still infect a few other cells before the infection dies off. The average number of
new infections caused by a single infected cell is

E[Xij] =
Rij

0

1−Rij
0

. (8)

Note that Eq. (8) does not count the initial migrant cell, only new infections that occur in compart-
ment j.

This equation makes use of the fact that the probability of producing exactly n offspring is
given by

P (nij) = Cn
(Rij

0 )n

(1 +Rij
0 )2n+1

Cn =
1

1 + n

(
2n

n

)
.
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where Cn is the nth Catalan number, describing the number of unique infection paths leading to
exactly n offspring.

It is important to note that both these equations apply only when there is no previously es-
tablished infection when the initial cell of strain i arrives. If strain k 6= i is already resident in
compartment j, then Rij

0 must be replaced by Rij
0 /R

kj
0 , to account for the reduction in target cells

(see x∗ in Equation 3).

3 Mutation-selection equilibrium
To approximate the probability of resistance via different paths in later sections, we will encounter
many expressions that require the frequency at which a rare deleterious mutant exists in a popu-
lation at equilibrium. Here we describe a method to determine the probability distribution for the
number of either one-step or two-step mutants in a compartment where the wild-type (or single
mutant) population is at carrying capacity.

We make the following assumptions: The carrying capacity of the resident population is large
enough that stochastic fluctuations in size are not important. At each infection event, there is a
probability µ that a wild-type infected cell will mutate and instead produce a mutant infected cell.
Mutant cells have a infection rate that is reduced by a factor of 1−s, where 0 < s < 1 is the cost of
the mutation (or the selection coefficient), but die at the same rate dy. We can assume that µ << 1
so that mutation does not significantly change the equilibrium population size nor the infection rate
of the wild-type cells.

3.1 Frequency of single mutants
Here we consider, as an example, mutants resistant to drug 1 that exist before treatment, or in the
sanctuary during treatment. The frequency of single mutants can be determined by considering
the stochastic process determining the size of the single mutant population (X1). Let the resident
population (in this example, the wild type) be at equilibrium level (K), where the replication rate
is equal to the death rate (dyK). We then have the following processes that can stochastically occur
in the population:

X1 → X1 + 1 ... rate: µ1dyK

X1 → X1 + 1 ... rate: (1− s1)dyX1

X1 → X1 − 1 ... rate: dyX1

(9)

This is a standard immigration-birth-death process, with immigration rate I = µ1dyK, birth rate
B = (1 − s1)dy, and death rate D = dy. The probability generating function for the the size of a
population governed by this process (9; 10) is

F (z) =

(
B −D
Bz −D

)( IB )
(10)
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and so the PGF for the distribution of the mutant population size is

F (z) =

(
s1

1− (1− s1)z

)( Kµ1
(1−s1)

)
(11)

where the probability that there are exactly n mutants can be recovered as p(n) = 1
n!
dnF
dzn
|z=0. The

average number of mutants is

E[z] =
dF

dz
|z=1 = K

µ1

s1
. (12)

3.2 Frequency of double mutants
We now assume that one mutation occurs at a rate µ1 and has cost s1, while the other has µ2 and
s2. This situation represents the occurance of double mutants in any compartment before treatment
starts or in the sanctuary during treatment. A cell with both mutations can arise by either by a
wild-type cell acquiring both mutations simultaneously, or, by a mutant cell with one mutation
gaining the other (in either order). The fitness of the double mutant cells is reduced by a factor
(1− s1)(1− s2).

The frequency of double mutants can be determined by considering the stochastic process
determining the size of the single and double mutant populations (X1, X2, X12):

X1 → X1 + 1 ... rate: µ1dyK + (1− s1)dyX1

X1 → X1 − 1 ... rate: dyX1

X2 → X2 + 1 ... rate: µ2dyK + (1− s2)dyX2

X2 → X2 − 1 ... rate: dyX2

X12 → X12 + 1 ... rate: µ1µ2dyK + µ1(1− s2)dyX2 + µ2(1− s1)dyX1 + (1− s1)(1− s2)dyX12

X12 → X12 − 1 ... rate: dyX12

(13)

However, this is no longer a simple immigration-birth-death process and we are not aware of an
analytic solution.

An approximate solution can be obtained if we assume that each of the single mutant popu-
lations are large enough so that they can also be considered to be at a constant equilibrium level
(K1 = µ1/s1K and K2 = µ2/s2K). This approximation is reasonable, because if double mutants
are frequent enough to affect treatment failure, then for realistically small values of µ/s , single
mutants will be quite frequent.
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In this limit, the stochastic process is now:

X12 → X12 + 1 ... rate: µ1µ2dyK + µ1(1− s2)dy
(
µ2

s2

)
K + µ2(1− s1)dy

(
µ1

s1

)
K

X12 → X12 + 1 ... rate: (1− s1)(1− s2)dyX12

X12 → X12 − 1 ... rate: dyX12

(14)

This is a modified immigration-birth-death process with

I = µ1µ2dyK

(
1

s1
+

1

s2
− 1

)
B = (1− s1)(1− s2)dy
D = dy

(15)

and the PGF for the distribution of the double mutant population size is

F (z) =

(
1− (1− s1)(1− s2)
1− (1− s1)(1− s2)z

) µ1µ2
(1−s1)(1−s2)

K
(

1
s1

+ 1
s2
−1
)

(16)

where the probability that there are exactly n mutants can be recovered as p(n) = 1
n!
dnF
dzn
|z=0. The

average number of mutants is
E[z] = K

µ1µ2

s1s2
. (17)

This is the same result that one would derive using a fully deterministic model (for example, see
Nowak and May(1)).

Part II

Paths to treatment failure
4 Overview of probability of treatment failure
To obtain a simplified analytic description of the probability distribution of the time to treatment
failure in our model, we consider a reduced Markov chain description for the evolution of resis-
tance. The Markov chain reduces the possible number of states of the population using the fol-
lowing assumptions: First, we assume that only one type of cells is present in a compartment at a
given time. Second, we assume that when a strain that colonizes a compartment, it instantaneously
reaches its carrying capacity. This means that the period when the strain is growing exponentially
is ignored. We can make this assumption because exponential growth occurs much faster than evo-
lution (separation of timescales), so the chance that resistance mutations appear when the pathogen
is growing exponentially is much lower than the chance that they appear when the infected cells
are at carrying capacity. Thus, in this description a compartment is either empty or fully occupied
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by only one strain. Transitions between states in this description occur at constant rates given by
their average value.

In the simplest case, we will consider two competing paths to resistance: direct evolution of
double-drug resistance from the sanctuary, or stepwise evolution of resistance via the single-drug
compartment. For simplicity, for the rest of the Supplement we will assume there is only one
single-drug compartment, with drug 1, though extension to two is straightforward. We will first
derive results without considering the possibility of pre-existing mutations, and then extend our
calculations to include this source.

4.1 Acquired resistance only
Let r01 be the probability per unit time (the rate) at which the single-drug compartment (“1”) is
colonized from the sanctuary (“0”). Similarly, r12 is the rate of the double-drug compartment
(“2”) being colonized from the single-drug compartment (once the SDC is colonized), and r02
the rate of direct colonization of the double-drug compartment from the sanctuary. Expressions
for these rates will be given in the subsequent sections (§5.1-5.3). Assuming that at t = 0 only
the sanctuary is colonized, and it contains only wild-type cells at carrying capacity, then we can
write the probability distribution functions for the time at which the double-drug compartment is
colonized via each path as

P02(t) = r02e
−r02t

P012(t) =
r01r12
r01 − r12

(e−r12t − e−r01t) (18)

where P02 refers to the direct path from the sanctuary, and P012 refers to the path going through
the single-drug compartment. Similarly, the cumulative distribution functions C(t), defined as the
probability that the target compartment has already been colonized by a particular time, are written
as C(t) =

∫ t
0
P (u)du.

The conditional cumulative distribution function F (t) describes the probability that the double-
drug compartment is colonized via a particular path, by a particular time, when both paths are
possible. To calculate F (t), we must condition the CDF for each path on the probability that the
other path has not occurred, resulting in

F02(t) =

∫ t

0

P02(u)(1− C012(u))du

F012(t) =

∫ t

0

P012(u)(1− C02(u))du

(19)

4.2 Including pre-existing resistance
At the time that drug treatment is started, there may already be single mutants pre-existing in the
single-drug compartment, or double mutants pre-existing in the double-drug compartment, which

9



can speed up the time to resistance. We term the probability that an individual has an established
single mutant population in the single-drug compartment at t = 0 as pss and the same probability
for a double mutant in the double-drug compartment as pdd. Then the conditional cumulative
distribution functions become

F02(t) = (1− pss)
(
pdd + (1− pdd)

∫ t

0

P02(u)(1− C012(u))du

)
F012(t) = pss + (1− pss)(1− pdd)

∫ t

0

P012(u)(1− C02(u))du

(20)

5 Rates of treatment failure

5.1 Colonization of the single-drug compartment by single resistant mu-
tants

For each single-drug compartment, there are two separate paths by which single drug resistance
can arise during treatment, depending on whether mutation or migration from the sanctuary occurs
first. Consequently, in the general two-drug case where there are two single-drug compartments,
there are four separate paths by which single-drug resistance can happen. Here we present results
only considering one single-drug compartment, though the extension to two is simple. Parameter
descriptions are given in the main text.

Mutation-migration path In this path a mutant strain is generated in the sanctuary and migrates
to the single-drug compartment. The rate at which this path happens is proportional to the carrying
capacity of the wild-type population in the sanctuary (number of infected cells at equilibrium), the
frequency of the mutant in this population (Equation 12), the migration rate (Equation 5), and the
establishment probability (Equation 7) of the mutant in the single-drug compartment:

rµm01 = KWT
SAN

µ1

s1
mSAN,SDCP

1,SDC
est

= KWT
SAN

µ1

s1
m
NSDC

NTOT

(
1− 1

RWT (1− s1)

) (21)

Migration-mutation path In this path a wild-type migrant from the sanctuary goes to the single-
drug compartment and gains a mutation. The rate at which this path happens is proportional to
the carrying capacity of the wild-type population in the sanctuary (number of infected cells at
equilibrium), the migration rate, the size of the wild-type infection in the single-drug compartment
before it goes extinct (Equation 8), the mutation rate, and the establishment probability of the
mutant.

rmµ01 = KWT
SANmSAN,SDCE[XWT,SDC ]µ1P

1,SDC
est

= KWT
SANm

NSDC

NTOT

(
RWT (1− ε1)

1−RWT (1− ε1)

)
µ1

(
1− 1

RWT (1− s1)

) (22)
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Comparison The total rate of colonization is r01 = rµm01 + rmµ01 . For most of the parameter
ranges we will consider, the rate of the mutation-migration path is much larger than the rate of the
migration-mutation path. This is because we consider the cost of the mutation (s) to be relatively
small but the drug efficacy to be quite large (ε ≈ 1), so that the fitness of the mutant in the
sanctuary is much larger than the fitness of the wild type in the single-drug compartment. However,
if RWT (1− ε1) > 0.5, it is possible for the migration-mutation path to be more important.

5.2 Colonization of the double-drug compartment via the single-drug com-
partment

There are two separate paths by which double drug resistance can arise from single mutants es-
tablished the SDC during treatment, depending on whether mutation or migration from the SDC
occurs first.

Mutation-migration path In this path a double mutant strain is generated in the single-drug
compartment and migrates to the double-drug compartment. We assume the single resistant pop-
ulation in the single-drug compartment is at steady state when mutation occurs. The rate at which
this path happens is proportional to the carrying capacity of the single resistant mutant population
in the single-drug compartment (number of infected cells at equilibrium), the frequency of the dou-
ble mutant in this population, the migration rate, and the establishment probability of the double
mutant in the double-drug compartment.

rµm12 = K1
SDC

µ2

s2
mSDC,DDCP

12,DDC
est

= K1
SDC

µ2

s2
m
NDDC

NTOT

(
1− 1

RWT (1− s1)(1− s2)

) (23)

Migration-mutation path In this path a single resistant mutant migrant from the single-drug
compartment goes to the double-drug compartment and gains a mutation. We assume the single
resistant population in the single-drug compartment is at steady state when migration occurs. The
rate at which this path happens is proportional to the carrying capacity of the single resistant mutant
population in the single-drug compartment (number of infected cells at equilibrium), the migration
rate, the size of the single resistant infection in the double-drug compartment before it goes extinct,
the mutation rate, and the establishment probability of the double mutant.

rmµ12 = K1
SDCmSDC,DDCE[X1,DDC ]µ2P

12,DDC
est

= K1
SDCm

NDDC

NTOT

(
RWT (1− s1)(1− ε2)

1−RWT (1− s1)(1− ε2)

)
µ2

(
1− 1

RWT (1− s1)(1− s2)

) (24)

Comparison The total rate of colonization is r12 = rµm12 + rmµ12 . For most of the parameter
ranges we will consider, the rate of the mutation-migration path is much larger than the rate of
the migration-mutation path. This is because we consider the cost of the mutation (s2) to be
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relatively small but the drug efficacy to be quite large (ε2 ≈ 1), so that the fitness of the mutant
in the SANctuary is much larger than the fitness of the wild type in the single-drug compartment.
However, ifRWT (1−ε2) > 0.5, it is possible for the migration-mutation path to be more important.

5.3 Colonization of the double-drug compartment directly from the sanctu-
ary

There are three separate paths by which double drug resistance can arise directly from the sanctuary
during treatment, depending on the order in which the two mutations are acquired relative to the
migration event from the sanctuary.

Mutation-mutation-migration path In this path a double mutant strain is generated in the sanc-
tuary and migrates to the double-drug compartment. The rate at which this path happens is propor-
tional to the carrying capacity of the wild-type population in the sanctuary (the number of infected
cells at equilibrium), the frequency of the double mutant in this population, the migration rate, and
the establishment probability of the double mutant in the double-drug compartment.

rµµm02 = KWT
SAN

µ1µ2

s1s2
mSAN,DDCP

12,DDC
est

= KWT
SAN

µ1µ2

s1s2
m
NDDC

NTOT

(
1− 1

RWT (1− s1)(1− s2)

) (25)

Mutation-migration-mutation path In this path a single mutant strain resistant to either drug
1 or drug 2 is generated in the sanctuary and migrates to the double-drug compartment, where
it gains a second mutation. The rate at which this path happens is proportional to the carrying
capacity of the wild-type population in the sanctuary (the number of infected cells at equilibrium),
the frequency of the single mutant in this population, the migration rate, the size of the single
mutant infection in the double-drug compartment before going extinct, the mutation rate, and the
establishment probability of the double mutant in the double-drug compartment. Mutations can
occur in either order.

rµmµ02 = KWT
SAN

µ1

s1
mSAN,DDCE[X1,DDC ]µ2P

12,DDC
est +KWT

SAN

µ2

s2
mSAN,DDCE[X2,DDC ]µ1P

12,DDC
est

= KWT
SANµ1µ2m

NDDC

NTOT

(
1− 1

RWT (1− s1)(1− s2)

)
×
[

1

s1

(
RWT (1− s1)(1− ε2)

1−RWT (1− s1)(1− ε2)

)
+

1

s2

(
RWT (1− s2)(1− ε1)

1−RWT (1− s2)(1− ε1)

)]
(26)

Migration-mutation-mutation path In this path a wild-type migrant from the sanctuary goes to
the double-drug compartment, where it gains both mutations. The rate at which this path happens
is proportional to the carrying capacity of the wild-type population in the sanctuary (the number of
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infected cells at equilibrium), the migration rate, the size of the wild-type infection in the double-
drug compartment before going extinct, both mutation rates, and the establishment probability of
the double mutant in the double-drug compartment. Mutations can occur in either order.

rmµµ02 = KWT
SANmSAN,DDCE[XWT,DDC ]µ1E[X1,DDC ]µ2P

12,DDC
est

+KWT
SANmSAN,DDCE[XWT,DDC ]µ2E[X2,DDC ]µ1P

12,DDC
est

= KWT
SANµ1µ2m

NDDC

NTOT

(
RWT (1− ε1)(1− ε2)

1−RWT (1− ε1)(1− ε2)

)(
1− 1

RWT (1− s1)(1− s2)

)
×
[(

RWT (1− s1)(1− ε2)
1−RWT (1− s1)(1− ε2)

)
+

(
RWT (1− s2)(1− ε1)

1−RWT (1− s2)(1− ε1)

)]
(27)

Comparison The total rate of colonization is r02 = rµµm02 + rµmµ02 + rmµµ02 . For most of the
parameter ranges we will consider, the rate of the mutation-mutation-migration path is much larger
than the rate of the migration-mutation-mutation or mutation-migration-mutation path. This is
because we consider the cost of the mutations (s1, s2) to be relatively small but the drug efficacy to
be quite large (ε1, ε2 ≈ 1), so that the fitness of the mutant in the sanctuary is much larger than the
fitness of the wild type in the single or double-drug compartments.

6 Modified rate equations to account for temporal clustering
of mutations

We found that the rate expressions used above in the simplified Markov process did a very good job
of qualitatively explaining our simulation results, but consistently over-estimated the rate of treat-
ment failure, especially at low mutation rates, high migration rates, and low costs of resistance.
Through extensive simulations, we determined that this was due to an approximation inherent
in the rate formulas presented in Sections 5.1, 5.2 and 5.3. Because the mutation-migration (or
mutation-mutation-migration) path is dominant for all parameter ranges relevant to our study, we
focus on describing the issue and correction for this rate.

Equations (21), (24) and (25) assume that mutants (e.g. single mutants in the sanctuary in
Eq. (21)) are present at their expected mutation-selection frequency given by Eqs. (12) and (17) at
all times. However, in some parts of parameter space, this deterministic approximation leads to a
drastic overestimation of the rate of evolution of drug resistance. This overestimate occurs because
in reality, the prevalence of mutants varies in such a way that mutants tend to “clump” together
temporally. When the total rate of generating single mutants in a compartment is low (Kµ << 1),
but mutations are not very costly (s << 1), then mutants may not be present in the population in
most generations, but when they are present, then subcritical but efficient replication may cause
them to exist at frequencies much higher than the mutation-selection balance prediction. If, in
addition, the eventual probability of migrating and fixing in one of the other compartments is fairly
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high for each mutated individual, then the approximations of §5.1-5.3 will be far off, because the
probability that at least one of a group of mutants is successful will be a highly non-linear function
of the number of mutants. Using the average (or expected) number of mutants will therefore over-
estimate the rate of adaptation. See Figure S4 for an example of a parameter region where there
is less temporal clumping of mutations and migration rates are higher so the simplified Markov
process has a much better agreement with the stochastic simulations.

Intuitively, this can be understood as follows. Suppose the expected number of mutations exist-
ing in a particular compartment is 1, and each mutant individiual individual has a 10% probability
of migrating and establishing in the next compartment. We can demonstrate that adaptation will
occur faster if 1 mutant is consistently generated every generation, as opposed to 100 mutants all
occuring in one generation, every hundred generations. In the former case, there is overall a 10%
change of successful invasion every generation, leading to an expected waiting time for success
of 10 generations. In the latter case, there is an ∼ 100% chance of succsesful invasion every
hundredth generation, leading to an expected waiting time for success of 100 generations. In this
case, for a pathogen population trying to adapt, it would be much better to have 1 mutant every
generation (assuming expected number of mutants is 1) that has a 10% probability of success, than
to have 100 mutants all occurring in one generation, once in a hundred generations even though
success is virtually guaranteed in this generation.

Previous work has demonstrated that this effect is important for tunnelling (11) and also for
adaptation from standing genetic variation (Fig. 2 of Hermisson and Pennings(12)). Here we
adapt the mathematical approach of Weissman et al. (Appendix C) to recalcuate Equations (21),
(24) and (25), taking into account this uneven temporal distribution of mutations. We can avoid
needing to exactly specify this distribution by instead using a first-step analysis, which considers
each event that can happen to a single mutant individual and uses this to implicitly calculate the
ultimate probability of reaching and establishing infection in a new compartment.

6.1 Colonization of the single-drug compartment by single resistant mu-
tants

We consider first the rate at which the single-drug compartment (SDC) is colonized by single re-
sistant mutants originating in the sanctuary (SAN). We focus on the mutation-migration path, as it
is dominant for the entire parameter range of interest in this paper (drug treatment is highly effica-
cious and mutations have a low fitness cost).

The previous approach involved separately calculating and then multiplying together i) the ex-
pected number of secondary mutants generated from each mutation event from the wild type, ii) the
probability that each will migrate, and iii) the establishment; instead, this approach calculates this
entire process together. We call the overall probability that any single mutant (strain “1”, directly
resulting from a mutational event or one of its offspring) will migrate from the SAN to the SDC
and establish the “rescue probability”, p1,SAN,SDCresc . Once we know this probability, then the overall
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rate of generating single drug resistance is the product of this number and the rate of mutational
events from the wild type.

The first-step analysis uses the fact that the the rescue probability for an individual mutant is
equal to the probability that this individual itself establishes or that it produces an offspring that
establishes. There are four possible first events that can occur to an individual:

• With rate mSAN,SDC , it can migrate to the SDC, resulting in rescue with probability P 1,SDC
est

• With rate dy, it can die, resulting in zero probability of rescue

• With rate mSAN,o − mSAN,SDC , it can migrate to another compartment, resulting in zero
probability of rescue

• With rate (dy+mSAN,o)(1−s1), it can replicate and produce two identical mutant individuals,
and the probability that at least one of them is successful is 1− (1− p1,SAN,SDCresc )2.

Here mSAN,o =
∑

j 6=SAN
mSAN,j is the migration rate to any compartment outside the sanctuary.

We also use the fact that the turnover rate of the wild-type population in the SAN at equilibrium is
the sum of the death rate (dy) and the outward migration ratemSAN,o, because at equilibrium, input
to compartment must equal output from compartment. The replicate rate of the mutant population
is reduced by a factor of 1 − s compared to the wild type. Because we are using rates rather than
probabilities, we can normalize by the sum of the rates to get the expression

p1,SAN,SDCresc =
mSAN,SDCP

1,SDC
est + dy · 0 + (mSAN,o −mSAN,SDC) · 0

(dy +mSAN,o)(2− s1)

+
(dy +mSAN,o)(1− s1)(1− (1− p1,SAN,SDCresc )2)

(dy +mSAN,o)(2− s1)
(28)

This equation can be solved for p1,SAN,SDCresc to give

p1,SAN,SDCresc =
−s1 +

√
s21 + 4(1− s1)mSAN,SDCP

1,SDC
est /(dy +mSAN,o)

2(1− s1)
(29)

To calculate the overall rate of this path, rµm01 we need the rate of mutational events. This is the
product of the number of cells turning over each day (the carrying capacity of the SAN, KWT

SAN

multiplied by the turnover rate) and the mutation rate, u1. As a result, the rate of invasion of the
SDC from the SAN becomes

r01 ≈ rµm01 = KWT
SAN(dy +mSAN,o)µ1p

1,SAN,SDC
resc (30)
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6.2 Colonization of the double-drug compartment via the single-drug com-
partment

Using the same method as above, we get the probability that a mutational event that produces a
double mutant (strain “12”) in the SDC leads to successful invation of the DDC

p12,SDC,DDCresc =
−s2 +

√
s22 + 4(1− s2)mSDC,DDCP

12,DDC
est /(dy +mSDC,o)

2(1− s2)
(31)

where in this case mSDC,o =
∑

j 6=SDC
mSDC,j , so that

r12 ≈ rµm12 = K1
SDC(dy +mSDC,o)µ2p

12,SDC,DDC
resc (32)

6.3 Colonization of the double-drug compartment directly from the sanctu-
ary

We next determine the rate at which the the double-drug compartment (DDC) is colonized by
double resistant mutants originating in the sanctuary (SAN). We focus on the mutation-mutation-
migration path, for the same reasons discussed above. Because this process involves three steps,
we will need to invoke the first-step analysis twice. First, we will need to determine the overall
probability that any single mutant (strain ”1”, directly resulting from a mutational event or one of
its offspring) will gain a second mutation and migrate from the SAN to the DDC. We call this res-
cue probability p1,SAN,DDCresc . However, this rescue probability will depend on the probability that
any double mutant (strain ”12”, directly resulting from a mutational event or one of its offspring)
will migrate from the SAN to the DDC, p12,SAN,DDCresc .

We consider first the probability of rescue starting from a single mutant resistant to drug 1,
p1,SAN,DDCresc . For a single mutant individual in the SAN, there are four possible first events that can
occur:

• With rate mSAN,o, it can migrate away, resulting in zero probability of rescue

• With rate dy, it can die, resulting in zero probability of rescue

• With rate (dy+mSAN,o)(1−s1)u2, it can replicate and produce one double mutant offspring,
and the probability that either the single or double mutant is successful is p1,SAN,DDCresc +
p12,SAN,DDCresc (1− p1,SAN,DDCresc )).

• With rate (dy+mSAN,o)(1−s1)(1−u2), it can replicate without mutating, and the probability
that at least one of the resulting single mutants is successful is 1− (1− p1,SAN,DDCresc )2.
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We can write the rescue probability as the sum of the probabilities of each first-step event multiplied
by probability of rescue conditional upon this first step to get

p1,SAN,DDCresc =

mSAN,o · 0 + dy · 0 + (dy +mSAN,o)(1− s1)u2(p1,SAN,DDCresc + p12,SAN,DDCresc (1− p1,SAN,DDCresc ))

(dy +mSAN,o)(2− s1)

+
(dy +mSAN,o)(1− s1)(1− u2)(1− (1− p1,SAN,DDCresc )2)

(dy +mSAN,o)(2− s1)
(33)

which, when solved for p1,SAN,DDCresc , gives:

p1,SAN,DDCresc =
−(s1 + (1− s1)u2(p12,SAN,DDCresc + 1))

2(1− s1)(1− u2)

+

√
(s1 + (1− s2)u2(p12,SAN,DDCresc + 1))2 + 4(1− s1)2u2(1− u2)p12,SAN,DDCresc

2(1− s1)(1− u2)
(34)

Rescue could also occur starting from a single mutant resistant instead to drug 2, with a probability
p2,SAN,DDCresc , which by symmetry is given by

p2,SAN,DDCresc =
−(s2 + (1− s2)u1(p12,SAN,DDCresc + 1))

2(1− s2)(1− u1)

+

√
(s2 + (1− s1)u2(p12,SAN,DDCresc + 1))2 + 4(1− s2)2u1(1− u1)p12,SAN,DDCresc

2(1− s2)(1− u1)
(35)

These formulae require knowing p12,SAN,DDCresc , which can be calculated using a separate first-
step analysis that considers each possible first even that can occur to a double mutant in the sanc-
tuary:

• With ratemSAN,DDC , it can migrate to the DDC, resulting in rescue with probability P 12,DDC
est

• With rate dy, it can die, resulting in zero probability of rescue

• With rate mSAN,o − mSAN,DDC , it can migrate to another compartment, resulting in zero
probability of rescue

• With rate (dy + mSAN,o)(1− s1)(1− s2), it can replicate and produce two identical double
mutant individuals, and the probability that at least one of them is successful is 1 − (1 −
p12,SAN,DDCresc )2.

This gives us the implicit formula for p12,SAN,DDCresc

p12,SAN,DDCresc =
mSAN,DDCP

12,DDC
est + dy · 0 + (mo −mSAN,DDC) · 0

(dy +mSAN,o)(1 + (1− s1)(1− s2))

+
(dy +mSAN,o)(1− s1)(1− s2)(1− (1− p12,SAN,DDCresc )2)

(dy +mSAN,o)(1 + (1− s1)(1− s2))
(36)

17



which can be solved to give

p12,SAN,DDCresc = −(1− (1− s1)(1− s2))
2(1− s1)(1− s2)

+

√
(1− (1− s1)(1− s2))2 + 4(1− s1)(1− s2)mSAN,DDCP

12,DDC
est /(dy +mSAN,o)

2(1− s1)(1− s2)
. (37)

The overall rate of this path of invasion of the DDC from the SAN, rµµm02 , which includes the fact
that mutations may occur simultaneously or in either order, is then

r02 ≈ rµµm02 = KWT
SAN(dy +mSAN,o)(µ1p

1,SAN,DDC
resc + µ2p

2,SAN,DDC
resc + µ1µ2p

12,SAN,DDC
resc ). (38)

6.4 Limiting forms
In particular limits, these modified equations reduce to the expression given in Sections 5.1 -
5.3. By comparing the expressions for rµm01 and rµm12 in Equations (30) and (32) to those in
(21) and (24), we see that these are equivalent in the limit that (1 − s)pmig,est/s

2 � 1. Here
pmig,est is the probability that an individual mutant will migrate to the target compartment be-
fore dying or migrating to another compartment. For example, for colonization of the SDC,
pmig,est = mSAN,SDCP

1,SDC
est /(dy + mSAN,o). In this limit, the probability that at least one in-

dividual in the lineage of the mutant produced from the wildtype is able to establish infection in a
new compartment can be well-approximated by the product of the average lineage size (1/s) and
the migration-establishment probability (pmig,est). Note that this limit does not depend on µ. For
the direct path, the conditions that lead to equivalence between rµµm02 given by (38) and (25) are
more climplicated, and do depend on µ.

7 Comparison of stepwise versus direct path to acquired double-
drug resistance

One way to quantify the influence of single drugs compartments (SDC) on the evolution of drug
resistance is to determine the compartment size at which the probability of stepwise evolution
becomes equal to the probability of direct evolution in the absence of this compartment. This cor-
responds to the “crossing point” of the two lines in Fig 2. If the probabilities become equal when
the SDC are small relative to the double-drug compartments, this indicates that this extra compart-
ment has a disproportionate influence on the risk of resistance.

Because the analytic calculations described in the previous sections match extremely well with
the simulation results (Fig 2 and Fig S4), we can numerically predict the SDC size at the cross point
by setting the conditional cumulative distribution functions for the probability of treatment failure
(Equation 19) by the direct (F02(t)) or stepwise (F012(t)) path equal, and solving forNSDC/NDDC .
However, we would like to have an expression for this value, to understand its dependence on
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the parameter values. While no general closed form solution exists, we can get an approximate
expression in two different regimes.

For both regimes we use the simpler expressions given in Section 5, which although neglecting
temporal clustering of mutants, only slightly overestimates rates of evolution for the parameter
ranges we use, and yields much more comprehensible formulae.

Approximation 1 The first approximation is valid if we look at treatment outcomes when a
short enough time (t) has passed so that the prevalence of either single drug resistance or treatment
failure is low and all steps are rate-limited (r01t � 1, r12t � 1, r02t � 1). This situation occurs
for the results presented in Fig 2a. In this limit,

F02(t) ≈ r02t

≈ KWT
SAN

µ2

s2

(
m
NDDC

NTOT

)(
1− 1

RWT (1− s)2

)
t

F012(t) ≈
1

2
r01r12t

2

≈ 1

2
KWT
SAN

µ

s

(
m
NSDC

NTOT

)(
1− 1

RWT (1− s)

)
K1
SDC

µ

s

(
m
NDDC

NTOT

)(
1− 1

RWT (1− s)2

)
t2

(39)

Setting F02(t) = F012(t), and using the definitions of the carrying capacities (Equation 3), we find
that the cross-point occurs when

NSDC

NDDC

≈ NSDC

NTOT

=

(
1

2
mNTOT

dx
dy

(
1− 1

RWT (1− s)

)2

t

)(−1/2)

. (40)

We use the fact that the double-drug compartment comprises the vast majority of the body for
all situations we study. Therefore, in this limit, the size of the SDC where the stepwise path
to resistance becomes more important than the direct path increases with the pathogen virulence
(dy/dx), but decreases with the migration rate (m), the total number of uninfected cells before
treatment (NTOT , the time of observation (t), and (weakly) with the fitness of the single mutant
(RWT (1− s))

Approximation 2 A second approximation may hold for longer times, if the system is in a regime
where treatment time is long enough so that most individuals who developed single drug resistance
progressed to treatment failure (r12t � 1), but the other (generally slower) steps remain rate
limiting (r01t� 1, r02t� 1. This situation occurs for the results presented in Fig 2b. In this limit,

F02(t) ≈ r02t

≈ KWT
SAN

µ2

s2

(
m
NDDC

NTOT

)(
1− 1

RWT (1− s)2

)
t

F012(t) ≈ r01t

≈ KWT
SAN

µ

s

(
m
NSDC

NTOT

)(
1− 1

RWT (1− s)

)
t

(41)

19



Setting F02(t) = F012(t), we find that the cross-point occurs when

NSDC

NDDC

=
u

s

(
1− 1

RWT (1− s)2

)(
1− 1

RWT (1− s)

)−1
≈ u

s
. (42)

We use the fact that the cost of resistance is small (s� 1) and RWT (1− s)2 > 1. This simpler and
more intuitive result demonstrates that the more infrequently mutations occur and the more costly
they are, the rarer it is to get double mutants, and the more important the stepwise path involving
the SDC is.

Note that for many parameter values and treatment times, neither of these approximations may
be appropriate.

8 Including pre-existing resistance
For the main results of the paper, we ignore the effects of pre-existing single or double resistance
mutations in compartments containing one or both drugs. However, we present simulation results
including this standing genetic variation in Figure 3. Here we present calculations for the proba-
bility of pre-existing mutations, and with these expressions and formulation of Section 4.2, we can
analytically calculate how standing genetic variation changes the rate of acquiring resistance with
and without single-drug compartments.

8.1 Probability of pre-existing single drug resistance in the single-drug com-
partment

There are two mechanisms by which single drug resistance mutations may colonize the single-drug
compartment (SDC) very shortly after treatment begins, without being generated by the sanctuary.
When drug treatment starts, there is an existing wild-type infection in all compartments. In the
SDC, this infection has a size KWT

SDC . A mutation can either exist at mutation-selection balance in
this initial population, or, if the drug is not 100% efficacious, it can arise during replication that
continues as the wild-type population decays in the presence of the drug.

The relative probabilities of these two paths were considered in an early viral dynamics paper
(13), and they found that the probability of pre-existing mutation is always greater than the prob-
ability of a newly generated mutation (assuming that the drug treatment results can suppress the
wild-type population, i.e. RWT (1−ε1) < 1). They only used deterministic results, and did not con-
sider establishment probabilities. Newer work presented by Alexander and Bonhoeffer(9) revisited
this questions through a stochastic viral dynamics framework, and finds more nuanced results - the
relative important of de novo mutations depends on many parameters of the model - including s, ε,
dy/dx and RWT . Lower drug efficacies and higher costs of the mutation tend to make the contribu-
tions of de novo mutations greater than pre-existing mutations. Here we summarize the derivations
of Alexander and Bonhoeffer as they apply to our system.
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Time-dependent establishment probability For both pre-existing and de novo single drug mu-
tations arising in the single-drug compartment, we will need to know the establishment probability.
When RWT (1 − ε1) < 1, which we assume throughout the paper, the wild-type infection in the
SDC decays approximately exponentially as uninfected cells recover. The equations describing the
dynamics for uninfected cells x(t) and infected cells y(t) are (9)

x(t) ≈ NSDC(1− (1− 1/RWT )e−dxt)

y(t) ≈ KWT
SDCe

(g1(0,s)(e−dxt−1)+g2(s)dxt)
(43)

with the functions g1 and g2 given by

g1(t, s) = dy/dxe
−dxt(RWT − 1)(1− s)

g2(s) = dy/dx(RWT (1− s)− 1)
(44)

Because the number of available target cells depends on time, so does the effective R0 of the
invading mutant (R1,SDC

0 (t) = RWT (1 − s)x(t)/NSDC) and therefore the establishment prob-
ability, P 1,SDC

est = 1 − 1/R1,SDC
0 (§2). Initially, the establishment probability is zero (because

x(0) = NSDC/RWT and so R1,SDC
0 (0) = 1 − s < 1 ), and it increases over time. Alexander and

Bonhoeffer(9) derive an expression for P 1,SDC
est (t) for a mutant that appears at time t,

P 1,SDC
est (t) =

(
1 +

dy
dx
eg1(t,s)g1(t, s)

−g2(s)Γ(g2(s), 0, g1(t, s))

)−1
(45)

where the generalized incomplete Gamma function is Γ(z, a1, a2) =
∫ a2
a1
xz−1e−xdx. Note that

P 1,SDC
est (t) 6= 0. Here t refers to the time a mutant appears, not the time at which it establishes, and

since each strain has an average lifespan of 1/dy days, it may establish towards the end of its life
when infected cell levels have recovered enough that R1,SDC

0 > 0.

Mutation pre-exists in wild-type population The wild-type population that is initially present
in the single-drug compartment before drug treatment may harbor a resistance mutation. As shown
in §3.1, the probability generating function for the distribution of the initial single mutant popula-
tion size is

F (z) =

(
s1

1− (1− s1)z

)(KWT
SDCµ

(1−s1)

)

where the probability that there are n mutants can be recovered as p(n) = 1
n!
dnF
dzn
|z=0, and the

average number of mutants is E[z] = dF
dz
|z=1 = KWT

SDCµ/s. The establishment probability of each
of these mutants is P 1,SDC

est (0) (Eq. (45)), and so the overall probability that at least one mutant
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establishes an infection is

p =
∞∑
n=0

p(n)(1− (1− P 1,SDC
est (0))n)

= 1− F (1− P 1,SDC
est (0))

= 1−
(

s

1− (1− s)(1− P 1,SDC
est (0))

)(KWT
SDCµ

(1−s)

) (46)

Mutation arises de novo from the wild type The wild-type population that is initially present
in the single-drug compartment before treatment begins can generate a new resistance mutation
during the period when the drug is first administered and the wild-type population is declining. The
probability that a new mutation is generated during this decay depends on the product of the rate of
new mutations generated and their establishment probability, which are both are time-dependent
quantities(9). This product is given by

r(t) = KWT
SDCdyRWT (1− ε)µ

(
1−

(
1− 1

RWT

)
e−dxt

)
e(g1(0,s)(e

−dxt−1)+g2(s)dxt)P 1,SDC
est (t) (47)

where g1 and g2 are the same as defined in Equation (44). From r(t), the total probability that a de
novo mutation single mutant arises in the SDC and establishes is

p = 1− e−
∫∞
0 r(t)dt (48)

Comparison The total probability of single mutants establishing in the SDC shortly after treat-
ment initiation, due to standing genetic variation (pss), is the sum of these two probabilities. When
the cost of the mutation is relatively small (s � 1) but the drug efficacy is quite high (ε ≈ 1), the
chance that these mutants arise from mutation-selection balance is much higher than the chance
that they arise de novo during drug decay. We tested this for the range of parameter values used in
the main text figures.

8.2 Probability of pre-existing double drug resistance in the double-drug
compartment

There are three ways to develop resistance in the double-drug compartment that do not involve the
other compartments at all. When drug treatment starts, there is an existing wild-type infection in
the double-drug compartment. A double mutation can either exist at mutation-selection balance
in this initial population, or, if the drug is not 100% efficacious, it can arise during replication
that continues as the wild-type population, or pre-existing single resistant mutants, decays in the
presence of the drug. Due to our findings (above) that the first path is much more important for
single mutations in the SDC, we assume the same is true for double mutants in the DDC, and only
present this calculation. The agreement of these approximations with the full simulation results
validates this approach
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Double resistant mutant pre-exists in wild-type population As described in §3.2, we can ap-
proximate the distribution of the number of pre-existing double mutants, and hence the probability
that at least one establishes an infection. Using Equation 16, the probability that at least one pre-
existing double resistant mutant establishes an infection is

p = 1−
(

1− (1− s1)(1− s2)
1− (1− s1)(1− s2)(1− P 12,DDC

est (0))

)KWT
DDC

µ1µ2
s1s2

(49)

where P 12,DDC
est (0) follows the same form as Eq. (45) except that s1 is replaced with 1 − (1 −

s1)(1− s2).
We therefore approximate this rate p as the total probability of double mutants establishing

shortly after treatment initiation in the DDC, pdd.

Part III

Simulations
9 Overview
We developed a fully stochastic simulation where we keep track of the genotype and location of
every infected cell in the body. We explicitly simulate all the events that might occur to an infected
cell: replication (representing either division of a bacterial cell or infection of a new cell by a
virus), mutation (upon replication), migration and death. Events are chosen with a probability that
is proportional to their rate of occurrence. Once an event is executed, time is updated using the
total rate of all the possible events that could have occurred. This method for exact stochastic
simulation of Poisson processes is known as the Gillespie algorithm.

Rates of replication, death and migration The replication rate of cells of type i in compartment
j, rreplicationij , and the death rate rdeathij , are calculated using the deterministic basic viral dynam-
ics model described above (§1). To speed up the simulation of large numbers of cells over long
time periods, which we must repeat thousands of times, the model can be additionally simplified
to a single equation for the dynamics of infected cells. This is accomplished by assuming that
uninfected cells numbers change in parallel to infected cell numbers, without any lags, by setting
ẋ = 0. We then get a reduced model

˙yij =

[
λjdyR

ij
0

λj +
∑n

l=1R
lj
0 dyylj

]
yij − dyyij (50)

where the first term gives rreplicationij and the second term tells us that rdeathij = dy for all i, j. The
rate of production of uninfected cells in our model is λj = Njdx. This approximation in general
has very little effect on our results, as lags in target cell recovery or decline matter most when
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the total viral population size is changing rapidly in a compartment, which occurs on a timescale
much shorter than the evolutionary processes we are interested in. We have validated this using a
full simulation tracking infected as well as uninfected cells. However, this lag can influence the
fixation probability of pre-existing mutations in drug-treated compartments (§8), and so this ap-
proximation was not used for results including standing genetic variation.

The rate of migration out of a compartment does not depend on the type of the cell, so the total
outward migration rate is rmigrationij =

∑3
k=0mjk for all i. As in the main text, mjk is the migration

rate from compartment j to compartment k.

10 Simulation algorithm
1. Calculate the rate of every possible event

We denote the rate of an event as αijk where i = {0, 1, 2, 3} corresponds to the genotype of
the cell to which the event will occur (wild type, single mutant 1, single mutant 2, double
mutant), j = {0, 1, 2, 3} corresponds to the compartment where the event will occur (SAN,
SDC1, SDC2, DDC) and k = {0, 1, 2} corresponds to the type of event (replication,death,
migration). We can write αijk = nijrijk, where nij is the number of cells of type i in
compartment j and rijk is the rate at which event k occurs for cells of type i in compartment
j. If k = 0, rijk = rreplicationij , if k = 1, rijk = rdeathij and if k = 2, rijk = rmigrationij . The
total rate of possible events that can occur is αT =

∑
i

∑
j

∑
k αijk.

2. Determine which event will occur next
Draw a random number X from [0, 1]. If XαT < α000 the next event will be replication of
one wild-type strain in the sanctuary, if α000 < XαT < α000 + α001, the next event will be
death of one wild-type strain in the sanctuary and so on for all the 48 possibilities. We will
denote the genotype and compartment of the cell where next event will occur as i′ and j′

respectively.

3. Execute event

(a) Replication. Draw an additional random number from (0, 1) to determine if the cell
mutates to any of the other three genotypes or remains of type i′. Only one mutation
event per drug can occur. Increase the number of cells of the type chosen after mutation
in compartment j′ by 1.

(b) Death. Decrease the number of cells of type i′ in compartment j′ by 1.

(c) Migration. Draw an additional random number from (0, 1) to determine where the cell
migrates. Decrease the number of cells of type i′ in compartment j′ by 1 and increase
its number in the target compartment by 1.

4. Update time Update the time from t to t+ τ where τ is a number randomly drawn from an
exponential distribution with mean 1

αT
.
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These steps are iterated until a maximum time is reached (for Figures 2a, 2b) or until there is
colonization of the double-drug compartment (for Figures 2c, 2d, 3 and 4). We assume that the
double-drug compartment is colonized and consequently treatments fails if there are more than 10
double-drug resistant mutants in the double-drug compartment. We chose this threshold since the
probability that a population of 10 double-drug resistant mutants goes extinct in the double-drug
compartment is of the order of 10−6 for the parameter values that we use in our simulations.

For results including standing genetic variation we additionaly keep track of the genotype and
location of every uninfected cell in the body and explicitly simulate all the events that might oc-
cur to both infected and uninfected cells: replication of uninfected cells, infection, mutation upon
infection, death of both uninfected and infected cells, and migration of infected cells among differ-
ent compartments. If treatment does not fail and the number of uninfected cells in the double-drug
compartment is restored to the value at carrying capacity by the action of the drug then we switch
to simulating only the dynamics of infected cells.

10.1 Initial conditions
10.1.1 Not including standing genetic variation

We assume that when treatment starts the wild-type population is at its carrying capacity in the
sanctuary and the other compartments have no infected cells. Thus, the initial number of wild-
type strains in the sanctuary is KWT

SAN . We also assume that the population is at mutation-selection
equilibrium in the sanctuary so we sample the initial number of mutants resistant to drug 1, the
initial number of mutants resistant to drug 2 and the initial number of double-drug resistant mutants
from Poisson distributions with means KWT

SAN
µ1
s1

, KWT
SAN

µ2
s2

and KWT
SAN

µ1µ2
s1s2

respectively.

10.1.2 Including standing genetic variation

We account for pre-existing mutations by simulating the infection before initiating treatment. We
assume that the wild-type starts at its carrying capacity in all the four compartments and simulate
the infection for 100 days (since there are no drugs, the R0 of the wild-type is RWT in all the
compartments). We verified that this time is long enough for the population of infected cells to
reach mutation-selection balance in all the compartments before treatments starts.

11 Distinguishing paths to resistance evolution in simulations
We distinguish between the direct and the stepwise path to resistance evolution by determining
whether the single-drug compartment is already colonized by single-drug resistant mutants when
treatment fails. We assume that the single-drug compartment is colonized if it has more than 10
single-drug resistant mutants. We chose this threshold since the probability that a population of 10
single-drug resistant mutants goes extinct in the single-drug compartment is of the order of 10−6

for the parameter values that we use in our simulations. When there is more than one single-drug
compartment, stepwise evolution of resistance can happen via three different paths: Either of the

25



single-drug compartments can be colonized before the double-drug compartment or both single-
drug compartments can be colonized before the double-drug compartment. We study the relative
frequency of the stepwise paths to resistance evolution in Figure 4.

12 Determining the average viral load
The mean viral load is the average of the total number of infected cells over all the time steps in
the simulation weighted by the length of each time step. This is (

∑
i Viτi)/ttotal, where Vi is the

total number of infected cells in time step i, τi is the length of time step i and ttotal =
∑

i τi is the
total simulation time.

13 Information on figures in the main text
The following parameter values are the same in all figures: RWT = 4, ε1 = 0.99, ε2 = 0.99, dy =
1 d−1, dx = 0.1 d−1 and m = 0.1 d−1.

Figure 2
Figures 2a and 2b

The infection is simulated until the total time has been reached regardless of whether treatment
failed or not. The size of the compartment with drug 1, NSDC1, increases along the x-axis and
each point is the fraction of the total number of simulated patients that failed via the indicated path
(either direct or stepwise). For each value of NSDC1 treatment has failed in at least 2000 simulated
patients.

Parameters: s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC2 =
0 cells, NDDC = 107 cells, Total time: 365 days (Figure 2a), Total time: 3650 days (Figure 2b).

Figures 2c and 2d

We show an example run of a simulated patient where the double-drug compartment is colonized
in the absence (Figure 2c) and the presence (Figure 2d) of a single-drug compartment containing
drug 1. The mean time to treatment failure over 2000 simulated patients for the parameters in
Figure 2c is 1.576× 105 days and for the parmeters in Figure 2d is 2270 days.

Parameters: s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC2 =
0 cells, NDDC = 107 cells, NSDC1 = 0 cells (Figure 2c), NSDC1 = 5× 104 cells (Figure 2d).
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Figure 3
We simulate the infection until there is colonization of the double-drug compartment. To capture
the trade-off between total drug coverage and the presence of a single-drug compartment, the size
of the single-drug compartment with drug 1 increases along the x-axis keepingNSAN+NSDC1 con-
stant. We plot both the mean viral load until treatment failure and the fold-increase in the adaptation
rate relative to the case when there are no single-drug compartments (NSAN = 105 cells, NSDC1 =
0 cells). The adaptation rate is calculated as 1

Tf
where Tf is the average time to treatment failure

over at least 30000 simulations. The fold-increase in adaptation rate relative to NSDC1 = 0 is
shown both for simulations including and not including standing genetic variation.

Parameters: s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSDC1 = 105 − NSAN , NSDC2 =
0 cells, NDDC = 107 cells.

Figure 4
We assume that there is an additional single-drug compartment where only drug 2 is active. We
simulate the infection until there is colonization of the double-drug compartment and study the
dependency of the relative frequency of the paths for stepwise resistance evolution on the compart-
ment sizes, the mutation rates and the mutation costs. We consider the paths where only one of the
single-drug compartments is colonized before treatment fails. Each point corresponds to the total
fraction of patients that failed via the path SAN → SDC1→ DDC relative to the total fraction that
failed via the path SAN → SDC2→ DDC out of 6000 replicates.

Figure 4a

We study the effect of asymmetrical compartment sizes on the stepwise paths to resistance evolu-
tion by increasing NSDC1 along the x-axis while keeping NSDC2 constant.

Parameters: s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC2 =
104 cells, NDDC = 107 cells.

Figure 4b

We study the effect of asymmetrical mutation rates on the stepwise paths to resistance evolution
by increasing µ1 along the x-axis while keeping µ2 constant.

Parameters: s1 = 0.05, s2 = 0.05, µ2 = 10−5, NSAN = 105 cells, NSDC1 = 104 cells, NSDC2 =
104 cells, NDDC = 107 cells.
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Figures 4c

We study the effect of asymmetrical costs of resistance mutations on the stepwise paths to resis-
tance evolution by increasing s1 along the x-axis while keeping s2 constant.

Parameters: s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC1 = 104 cells, NSDC2 =
104 cells, NDDC = 107 cells.
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Part IV

Supplementary Figures
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Figure 1: Eradication of an acute disease in the presence of single-drug compartments. The proba-
bility that a disease with no sanctuary is eradicated after treatment is plotted as a function of the size of
the single-drug compartment with drug 1 (NSDC1), assuming that the sum of the sizes of the SDC1 and
the double-drug compartment is constant. Diagrams below the x-axis illustrate the changes in compartment
sizes, following the style of Figure 1. The infection is simulated for 100 days before treatment. Treatment
starts after this time and is simulated until there are no infected cells in the body (disease eradication) or until
the double-drug compartment is colonized. Parameters: RWT = 4, ε1 = 0.99, ε2 = 0.99, dy = 1 d−1, dx =
0.1 d−1,m = 0.1 d−1, s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 0 cells, NSDC2 =
0 cells, NDDC = 107 − NSDC1. NSDC1 changes along the x-axis. Each point corresponds to 3000 simu-
lated patients.
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Figure 2: Resistance evolution in the presence of single-drug compartments and pre-existing resis-
tance. (A and B) The shaded area gives the fraction of simulated patients that failed treatment after 1 or
10 years as a function of the size of the single-drug compartment containing drug 1 (SDC1) relative to the
size of the double-drug compartment (DDC). The infection in all the compartments is simulated for 100
days before treatment starts. We further indicate whether treatment failure occurred via direct (grey dots)
or stepwise evolution (pink dots). Solid lines are analytic calculations (Suppl. Methods §5, 6). (C and D)
Same as above, except that backwards migration is not allowed before treatment starts so the number of
pre-existing mutants in the single-drug compartment corresponds to the expectation at mutation-selection
balance and is not higher because of migration from the double-drug compartment as in A and B. Parameters:
RWT = 4, ε1 = 0.99, ε2 = 0.99, dy = 1 d−1, dx = 0.1 d−1,m = 0.1 d−1, s1 = 0.05, s2 = 0.05, µ1 =
10−5, µ2 = 10−5, NSAN = 105 cells, NSDC2 = 0 cells, NDDC = 107 cells. NSDC1 changes along the
x-axis for all the figures. For each value of NSDC1 treatment has failed in at least 300 simulated patients.
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Figure 3: Stepwise resistance evolution in the presence of two single-drug compartments when drug
efficacies differ. Fraction of simulated patients that failed via the path where the single-drug compartment
with drug 1 is colonized before treatment failure (P(SDC1): SAN → SDC1→ DDC) relative to the fraction
that failed via the path where the single-drug compartment with drug 2 is colonized before (P(SDC2): SAN
→ SDC2→ DDC) as a function of drug efficacies. The x-axis corresponds to the ratio of pathogen fitness in
the presence of drug 1 relative to in the presence of drug 2, which is equal to one minus the efficacy of drug 1
(1-ε1) over one minus the efficacy of drug 2 (1-ε2). Parameters: RWT = 4, dy = 1 d−1, dx = 0.1 d−1,m =
0.1 d−1, s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC1 = 104 cells, NSDC2 =
104 cells, NDDC = 107 cells. The total number of simulated patients for each point is 10000.
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Figure 4: Resistance evolution in the presence of single-drug compartments in a region of the param-
eter space where the simplified Markov process has a good agreement with the stochastic simulations.
The shaded area gives the fraction of simulated patients that failed treatment after 1 or 10 years as a function
of the size of the single-drug compartment containing drug 1 (SDC1) relative to the size of the double-drug
compartment (DDC). We further indicate whether treatment failure occurred via direct (grey dots) or step-
wise evolution (pink dots). Solid lines are simplified analytic calculations (Suppl. Methods §5). The vertical
dotted lines are analytical approximations for the point where the stepwise path to resistance becomes more
important than the direct path (Supp. Methods §7). Parameters: RWT = 4, dy = 1 d−1, dx = 0.1 d−1,m =
10−3 d−1, s1 = 0.1, s2 = 0.1, µ1 = 10−4, µ2 = 10−4, NSAN = 105 cells, NDDC = 107 cells. For each
value of NSDC1 treatment has failed in at least 1000 simulated patients.
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